Hopp til hovedinnhold
Løs for m
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\frac{5^{m}\times 5^{1}}{5^{-3}}=5^{1}
For å multiplisere potensene av det samme grunntallet, må du legge til eksponentene deres. Legg til 3 og -2 for å få 1.
5^{4}\times 5^{m}=5^{1}
Hvis du vil dele potensen av samme grunntall, trekker du nevnerens eksponent fra tellerens eksponent.
5^{4}\times 5^{m}=5
Regn ut 5 opphøyd i 1 og få 5.
625\times 5^{m}=5
Regn ut 5 opphøyd i 4 og få 625.
5^{m}=\frac{5}{625}
Del begge sidene på 625.
5^{m}=\frac{1}{125}
Forkort brøken \frac{5}{625} til minste felles nevner ved å dele teller og nevner på 5.
\log(5^{m})=\log(\frac{1}{125})
Ta logaritmen for begge sider av ligningen.
m\log(5)=\log(\frac{1}{125})
Logaritmen til et tall som er opphøyd i en potens, er potensen ganger logaritmen til tallet.
m=\frac{\log(\frac{1}{125})}{\log(5)}
Del begge sidene på \log(5).
m=\log_{5}\left(\frac{1}{125}\right)
Ved formelen for å endre grunntallet i logaritmen \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).