Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til x
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

\frac{4\left(x+2\right)}{\left(x-7\right)\left(x+2\right)}+\frac{3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av x-7 og x+2 er \left(x-7\right)\left(x+2\right). Multipliser \frac{4}{x-7} ganger \frac{x+2}{x+2}. Multipliser \frac{3}{x+2} ganger \frac{x-7}{x-7}.
\frac{4\left(x+2\right)+3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)}
Siden \frac{4\left(x+2\right)}{\left(x-7\right)\left(x+2\right)} og \frac{3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{4x+8+3x-21}{\left(x-7\right)\left(x+2\right)}
Utfør multiplikasjonene i 4\left(x+2\right)+3\left(x-7\right).
\frac{7x-13}{\left(x-7\right)\left(x+2\right)}
Kombiner like ledd i 4x+8+3x-21.
\frac{7x-13}{x^{2}-5x-14}
Utvid \left(x-7\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+2\right)}{\left(x-7\right)\left(x+2\right)}+\frac{3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)})
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av x-7 og x+2 er \left(x-7\right)\left(x+2\right). Multipliser \frac{4}{x-7} ganger \frac{x+2}{x+2}. Multipliser \frac{3}{x+2} ganger \frac{x-7}{x-7}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+2\right)+3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)})
Siden \frac{4\left(x+2\right)}{\left(x-7\right)\left(x+2\right)} og \frac{3\left(x-7\right)}{\left(x-7\right)\left(x+2\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+8+3x-21}{\left(x-7\right)\left(x+2\right)})
Utfør multiplikasjonene i 4\left(x+2\right)+3\left(x-7\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-13}{\left(x-7\right)\left(x+2\right)})
Kombiner like ledd i 4x+8+3x-21.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-13}{x^{2}+2x-7x-14})
Bruk den distributive lov ved å multiplisere hvert ledd i x-7 med hvert ledd i x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-13}{x^{2}-5x-14})
Kombiner 2x og -7x for å få -5x.
\frac{\left(x^{2}-5x^{1}-14\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}-13)-\left(7x^{1}-13\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-5x^{1}-14)}{\left(x^{2}-5x^{1}-14\right)^{2}}
For to differensierbare funksjoner er den deriverte av kvotienten av to funksjoner nevneren multiplisert med den deriverte av telleren minus telleren multiplisert med den deriverte av nevneren, delt på nevneren i andre.
\frac{\left(x^{2}-5x^{1}-14\right)\times 7x^{1-1}-\left(7x^{1}-13\right)\left(2x^{2-1}-5x^{1-1}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
\frac{\left(x^{2}-5x^{1}-14\right)\times 7x^{0}-\left(7x^{1}-13\right)\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Forenkle.
\frac{x^{2}\times 7x^{0}-5x^{1}\times 7x^{0}-14\times 7x^{0}-\left(7x^{1}-13\right)\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Multipliser x^{2}-5x^{1}-14 ganger 7x^{0}.
\frac{x^{2}\times 7x^{0}-5x^{1}\times 7x^{0}-14\times 7x^{0}-\left(7x^{1}\times 2x^{1}+7x^{1}\left(-5\right)x^{0}-13\times 2x^{1}-13\left(-5\right)x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Multipliser 7x^{1}-13 ganger 2x^{1}-5x^{0}.
\frac{7x^{2}-5\times 7x^{1}-14\times 7x^{0}-\left(7\times 2x^{1+1}+7\left(-5\right)x^{1}-13\times 2x^{1}-13\left(-5\right)x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
\frac{7x^{2}-35x^{1}-98x^{0}-\left(14x^{2}-35x^{1}-26x^{1}+65x^{0}\right)}{\left(x^{2}-5x^{1}-14\right)^{2}}
Forenkle.
\frac{-7x^{2}+26x^{1}-163x^{0}}{\left(x^{2}-5x^{1}-14\right)^{2}}
Kombiner like ledd.
\frac{-7x^{2}+26x-163x^{0}}{\left(x^{2}-5x-14\right)^{2}}
For ethvert ledd t, t^{1}=t.
\frac{-7x^{2}+26x-163}{\left(x^{2}-5x-14\right)^{2}}
For ethvert ledd t bortsett fra 0, t^{0}=1.