Hopp til hovedinnhold
Løs for y
Tick mark Image
Løs for x (complex solution)
Tick mark Image
Løs for x
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

5\times 36+8x\times 10\left(2x-1\right)=\left(4x-2\right)\left(12y-3\right)
Multipliser begge sider av formelen med 10\left(2x-1\right), som er den minste fellesnevneren av 4x-2,5.
180+8x\times 10\left(2x-1\right)=\left(4x-2\right)\left(12y-3\right)
Multipliser 5 med 36 for å få 180.
180+80x\left(2x-1\right)=\left(4x-2\right)\left(12y-3\right)
Multipliser 8 med 10 for å få 80.
180+160x^{2}-80x=\left(4x-2\right)\left(12y-3\right)
Bruk den distributive lov til å multiplisere 80x med 2x-1.
180+160x^{2}-80x=48xy-12x-24y+6
Bruk den distributive lov til å multiplisere 4x-2 med 12y-3.
48xy-12x-24y+6=180+160x^{2}-80x
Bytt om sidene, slik at alle variabelledd er på venstre side.
48xy-24y+6=180+160x^{2}-80x+12x
Legg til 12x på begge sider.
48xy-24y+6=180+160x^{2}-68x
Kombiner -80x og 12x for å få -68x.
48xy-24y=180+160x^{2}-68x-6
Trekk fra 6 fra begge sider.
48xy-24y=174+160x^{2}-68x
Trekk fra 6 fra 180 for å få 174.
\left(48x-24\right)y=174+160x^{2}-68x
Kombiner alle ledd som inneholder y.
\left(48x-24\right)y=160x^{2}-68x+174
Ligningen er i standardform.
\frac{\left(48x-24\right)y}{48x-24}=\frac{160x^{2}-68x+174}{48x-24}
Del begge sidene på 48x-24.
y=\frac{160x^{2}-68x+174}{48x-24}
Hvis du deler på 48x-24, gjør du om gangingen med 48x-24.
y=\frac{80x^{2}-34x+87}{12\left(2x-1\right)}
Del 174+160x^{2}-68x på 48x-24.