Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til x
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\frac{2x^{2}y^{2}}{4x^{2}+2401\times 3x^{-3}}
Regn ut 7 opphøyd i 4 og få 2401.
\frac{2x^{2}y^{2}}{4x^{2}+7203x^{-3}}
Multipliser 2401 med 3 for å få 7203.
\frac{2x^{2}y^{2}}{x^{-3}\left(4x^{5}+7203\right)}
Faktoriser uttrykkene som ikke allerede er faktorisert.
\frac{2y^{2}x^{5}}{4x^{5}+7203}
Hvis du vil dele potensen av samme grunntall, trekker du nevnerens eksponent fra tellerens eksponent.
\frac{\left(4x^{2}+7203x^{-3}\right)\frac{\mathrm{d}}{\mathrm{d}x}(2y^{2}x^{2})-2y^{2}x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2}+7203x^{-3})}{\left(4x^{2}+7203x^{-3}\right)^{2}}
For to differensierbare funksjoner er den deriverte av kvotienten av to funksjoner nevneren multiplisert med den deriverte av telleren minus telleren multiplisert med den deriverte av nevneren, delt på nevneren i andre.
\frac{\left(4x^{2}+7203x^{-3}\right)\times 2\times 2y^{2}x^{2-1}-2y^{2}x^{2}\left(2\times 4x^{2-1}-3\times 7203x^{-3-1}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
\frac{\left(4x^{2}+7203x^{-3}\right)\times 4y^{2}x^{1}-2y^{2}x^{2}\left(8x^{1}-21609x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Forenkle.
\frac{4x^{2}\times 4y^{2}x^{1}+7203x^{-3}\times 4y^{2}x^{1}-2y^{2}x^{2}\left(8x^{1}-21609x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Multipliser 4x^{2}+7203x^{-3} ganger 4y^{2}x^{1}.
\frac{4x^{2}\times 4y^{2}x^{1}+7203x^{-3}\times 4y^{2}x^{1}-\left(2y^{2}x^{2}\times 8x^{1}+2y^{2}x^{2}\left(-21609\right)x^{-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Multipliser 2y^{2}x^{2} ganger 8x^{1}-21609x^{-4}.
\frac{4\times 4y^{2}x^{2+1}+7203\times 4y^{2}x^{-3+1}-\left(2y^{2}\times 8x^{2+1}+2y^{2}\left(-21609\right)x^{2-4}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
\frac{16y^{2}x^{3}+28812y^{2}x^{-2}-\left(16y^{2}x^{3}+\left(-43218y^{2}\right)x^{-2}\right)}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Forenkle.
\frac{72030y^{2}x^{-2}}{\left(4x^{2}+7203x^{-3}\right)^{2}}
Kombiner like ledd.