Evaluer
\frac{31-3x}{\left(x-5\right)\left(x+3\right)}
Differensier med hensyn til x
\frac{3x^{2}-62x+107}{x^{4}-4x^{3}-26x^{2}+60x+225}
Graf
Aksje
Kopiert til utklippstavle
\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av x-5 og x+3 er \left(x-5\right)\left(x+3\right). Multipliser \frac{2}{x-5} ganger \frac{x+3}{x+3}. Multipliser \frac{5}{x+3} ganger \frac{x-5}{x-5}.
\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Siden \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} og \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)}
Utfør multiplikasjonene i 2\left(x+3\right)-5\left(x-5\right).
\frac{-3x+31}{\left(x-5\right)\left(x+3\right)}
Kombiner like ledd i 2x+6-5x+25.
\frac{-3x+31}{x^{2}-2x-15}
Utvid \left(x-5\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av x-5 og x+3 er \left(x-5\right)\left(x+3\right). Multipliser \frac{2}{x-5} ganger \frac{x+3}{x+3}. Multipliser \frac{5}{x+3} ganger \frac{x-5}{x-5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Siden \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} og \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)})
Utfør multiplikasjonene i 2\left(x+3\right)-5\left(x-5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{\left(x-5\right)\left(x+3\right)})
Kombiner like ledd i 2x+6-5x+25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}+3x-5x-15})
Bruk den distributive lov ved å multiplisere hvert ledd i x-5 med hvert ledd i x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}-2x-15})
Kombiner 3x og -5x for å få -2x.
\frac{\left(x^{2}-2x^{1}-15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+31)-\left(-3x^{1}+31\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}-15)}{\left(x^{2}-2x^{1}-15\right)^{2}}
For to differensierbare funksjoner er den deriverte av kvotienten av to funksjoner nevneren multiplisert med den deriverte av telleren minus telleren multiplisert med den deriverte av nevneren, delt på nevneren i andre.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+31\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Forenkle.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Multipliser x^{2}-2x^{1}-15 ganger -3x^{0}.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}\times 2x^{1}-3x^{1}\left(-2\right)x^{0}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Multipliser -3x^{1}+31 ganger 2x^{1}-2x^{0}.
\frac{-3x^{2}-2\left(-3\right)x^{1}-15\left(-3\right)x^{0}-\left(-3\times 2x^{1+1}-3\left(-2\right)x^{1}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
\frac{-3x^{2}+6x^{1}+45x^{0}-\left(-6x^{2}+6x^{1}+62x^{1}-62x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Forenkle.
\frac{3x^{2}-62x^{1}+107x^{0}}{\left(x^{2}-2x^{1}-15\right)^{2}}
Kombiner like ledd.
\frac{3x^{2}-62x+107x^{0}}{\left(x^{2}-2x-15\right)^{2}}
For ethvert ledd t, t^{1}=t.
\frac{3x^{2}-62x+107\times 1}{\left(x^{2}-2x-15\right)^{2}}
For ethvert ledd t bortsett fra 0, t^{0}=1.
\frac{3x^{2}-62x+107}{\left(x^{2}-2x-15\right)^{2}}
For ethvert ledd t, t\times 1=t og 1t=t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}