Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til a
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av 2a+3 og 3-2a er \left(-2a+3\right)\left(2a+3\right). Multipliser \frac{2}{2a+3} ganger \frac{-2a+3}{-2a+3}. Multipliser \frac{1}{3-2a} ganger \frac{2a+3}{2a+3}.
\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}
Siden \frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} og \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)}
Utfør multiplikasjonene i 2\left(-2a+3\right)-\left(2a+3\right).
\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)}
Kombiner like ledd i -4a+6-2a-3.
\frac{-6a+3}{-4a^{2}+9}
Utvid \left(-2a+3\right)\left(2a+3\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)})
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av 2a+3 og 3-2a er \left(-2a+3\right)\left(2a+3\right). Multipliser \frac{2}{2a+3} ganger \frac{-2a+3}{-2a+3}. Multipliser \frac{1}{3-2a} ganger \frac{2a+3}{2a+3}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)})
Siden \frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} og \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)})
Utfør multiplikasjonene i 2\left(-2a+3\right)-\left(2a+3\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)})
Kombiner like ledd i -4a+6-2a-3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}-6a+6a+9})
Bruk den distributive lov ved å multiplisere hvert ledd i -2a+3 med hvert ledd i 2a+3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}+9})
Kombiner -6a og 6a for å få 0.
\frac{\left(-4a^{2}+9\right)\frac{\mathrm{d}}{\mathrm{d}a}(-6a^{1}+3)-\left(-6a^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}a}(-4a^{2}+9)}{\left(-4a^{2}+9\right)^{2}}
For to differensierbare funksjoner er den deriverte av kvotienten av to funksjoner nevneren multiplisert med den deriverte av telleren minus telleren multiplisert med den deriverte av nevneren, delt på nevneren i andre.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{1-1}-\left(-6a^{1}+3\right)\times 2\left(-4\right)a^{2-1}}{\left(-4a^{2}+9\right)^{2}}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{0}-\left(-6a^{1}+3\right)\left(-8\right)a^{1}}{\left(-4a^{2}+9\right)^{2}}
Gjør aritmetikken.
\frac{-4a^{2}\left(-6\right)a^{0}+9\left(-6\right)a^{0}-\left(-6a^{1}\left(-8\right)a^{1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Utvid ved bruk av den distributive lov.
\frac{-4\left(-6\right)a^{2}+9\left(-6\right)a^{0}-\left(-6\left(-8\right)a^{1+1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
\frac{24a^{2}-54a^{0}-\left(48a^{2}-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Gjør aritmetikken.
\frac{24a^{2}-54a^{0}-48a^{2}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Fjerne unødvendige parenteser.
\frac{\left(24-48\right)a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Kombiner like ledd.
\frac{-24a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Trekk fra 48 fra 24.
\frac{-24a^{2}-54a^{0}-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
For ethvert ledd t, t^{1}=t.
\frac{-24a^{2}-54-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
For ethvert ledd t bortsett fra 0, t^{0}=1.