Løs for x
x=-4
x=6
Graf
Aksje
Kopiert til utklippstavle
4x+24+4x+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Variabelen x kan ikke være lik noen av verdiene -6,0 siden divisjon med null ikke er definert. Multipliser begge sider av formelen med 4x\left(x+6\right), som er den minste fellesnevneren av x,x+6,4.
8x+24+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Kombiner 4x og 4x for å få 8x.
8x+24-x\left(x+6\right)=0
Multipliser 4 med -\frac{1}{4} for å få -1.
8x+24-x^{2}-6x=0
Bruk den distributive lov til å multiplisere -x med x+6.
2x+24-x^{2}=0
Kombiner 8x og -6x for å få 2x.
-x^{2}+2x+24=0
Skriv polynomet på standardform ved å plassere leddene i rekkefølge fra høyeste til laveste potens.
a+b=2 ab=-24=-24
For å løse ligningen, faktorer du venstre side ved gruppering. Første, venstre side må skrives på nytt som -x^{2}+ax+bx+24. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,24 -2,12 -3,8 -4,6
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er positiv, har det positive tallet større absolutt verdi enn det negative. Vis alle slike hel talls par som gir produkt -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Beregn summen for hvert par.
a=6 b=-4
Løsningen er paret som gir Summer 2.
\left(-x^{2}+6x\right)+\left(-4x+24\right)
Skriv om -x^{2}+2x+24 som \left(-x^{2}+6x\right)+\left(-4x+24\right).
-x\left(x-6\right)-4\left(x-6\right)
Faktor ut -x i den første og -4 i den andre gruppen.
\left(x-6\right)\left(-x-4\right)
Faktorer ut det felles leddet x-6 ved å bruke den distributive lov.
x=6 x=-4
Hvis du vil finne formel løsninger, kan du løse x-6=0 og -x-4=0.
4x+24+4x+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Variabelen x kan ikke være lik noen av verdiene -6,0 siden divisjon med null ikke er definert. Multipliser begge sider av formelen med 4x\left(x+6\right), som er den minste fellesnevneren av x,x+6,4.
8x+24+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Kombiner 4x og 4x for å få 8x.
8x+24-x\left(x+6\right)=0
Multipliser 4 med -\frac{1}{4} for å få -1.
8x+24-x^{2}-6x=0
Bruk den distributive lov til å multiplisere -x med x+6.
2x+24-x^{2}=0
Kombiner 8x og -6x for å få 2x.
-x^{2}+2x+24=0
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 24}}{2\left(-1\right)}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn -1 for a, 2 for b og 24 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 24}}{2\left(-1\right)}
Kvadrer 2.
x=\frac{-2±\sqrt{4+4\times 24}}{2\left(-1\right)}
Multipliser -4 ganger -1.
x=\frac{-2±\sqrt{4+96}}{2\left(-1\right)}
Multipliser 4 ganger 24.
x=\frac{-2±\sqrt{100}}{2\left(-1\right)}
Legg sammen 4 og 96.
x=\frac{-2±10}{2\left(-1\right)}
Ta kvadratroten av 100.
x=\frac{-2±10}{-2}
Multipliser 2 ganger -1.
x=\frac{8}{-2}
Nå kan du løse formelen x=\frac{-2±10}{-2} når ± er pluss. Legg sammen -2 og 10.
x=-4
Del 8 på -2.
x=-\frac{12}{-2}
Nå kan du løse formelen x=\frac{-2±10}{-2} når ± er minus. Trekk fra 10 fra -2.
x=6
Del -12 på -2.
x=-4 x=6
Ligningen er nå løst.
4x+24+4x+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Variabelen x kan ikke være lik noen av verdiene -6,0 siden divisjon med null ikke er definert. Multipliser begge sider av formelen med 4x\left(x+6\right), som er den minste fellesnevneren av x,x+6,4.
8x+24+4x\left(x+6\right)\left(-\frac{1}{4}\right)=0
Kombiner 4x og 4x for å få 8x.
8x+24-x\left(x+6\right)=0
Multipliser 4 med -\frac{1}{4} for å få -1.
8x+24-x^{2}-6x=0
Bruk den distributive lov til å multiplisere -x med x+6.
2x+24-x^{2}=0
Kombiner 8x og -6x for å få 2x.
2x-x^{2}=-24
Trekk fra 24 fra begge sider. Hvilket som helst tall trukket fra null gir sin negasjon.
-x^{2}+2x=-24
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{24}{-1}
Del begge sidene på -1.
x^{2}+\frac{2}{-1}x=-\frac{24}{-1}
Hvis du deler på -1, gjør du om gangingen med -1.
x^{2}-2x=-\frac{24}{-1}
Del 2 på -1.
x^{2}-2x=24
Del -24 på -1.
x^{2}-2x+1=24+1
Del -2, koeffisienten i x termen, etter 2 for å få -1. Deretter legger du til kvadrat firkanten av -1 på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
x^{2}-2x+1=25
Legg sammen 24 og 1.
\left(x-1\right)^{2}=25
Faktoriser x^{2}-2x+1. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{25}
Ta kvadratroten av begge sider av ligningen.
x-1=5 x-1=-5
Forenkle.
x=6 x=-4
Legg til 1 på begge sider av ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}