Hopp til hovedinnhold
Evaluer
Tick mark Image
Differensier med hensyn til x
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Faktoriser x^{2}-5x+6. Faktoriser x^{2}-3x+2.
\frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-3\right)\left(x-2\right) og \left(x-2\right)\left(x-1\right) er \left(x-3\right)\left(x-2\right)\left(x-1\right). Multipliser \frac{1}{\left(x-3\right)\left(x-2\right)} ganger \frac{x-1}{x-1}. Multipliser \frac{1}{\left(x-2\right)\left(x-1\right)} ganger \frac{x-3}{x-3}.
\frac{x-1+x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Siden \frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} og \frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Kombiner like ledd i x-1+x-3.
\frac{2\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Faktoriser uttrykkene som ikke allerede er faktorisert i \frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Eliminer x-2 i både teller og nevner.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{\left(x-5\right)\left(x-3\right)}
Faktoriser x^{2}-8x+15.
\frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}+\frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-3\right)\left(x-1\right) og \left(x-5\right)\left(x-3\right) er \left(x-5\right)\left(x-3\right)\left(x-1\right). Multipliser \frac{2}{\left(x-3\right)\left(x-1\right)} ganger \frac{x-5}{x-5}. Multipliser \frac{2}{\left(x-5\right)\left(x-3\right)} ganger \frac{x-1}{x-1}.
\frac{2\left(x-5\right)+2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Siden \frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} og \frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{2x-10+2x-2}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Utfør multiplikasjonene i 2\left(x-5\right)+2\left(x-1\right).
\frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Kombiner like ledd i 2x-10+2x-2.
\frac{4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Faktoriser uttrykkene som ikke allerede er faktorisert i \frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}.
\frac{4}{\left(x-5\right)\left(x-1\right)}
Eliminer x-3 i både teller og nevner.
\frac{4}{x^{2}-6x+5}
Utvid \left(x-5\right)\left(x-1\right).