Evaluer
-\frac{\left(x+1\right)\left(x+3\right)}{x+2}
Differensier med hensyn til x
\frac{-x^{2}-4x-5}{\left(x+2\right)^{2}}
Graf
Aksje
Kopiert til utklippstavle
\frac{1}{x+2}+\frac{\left(-x-2\right)\left(x+2\right)}{x+2}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Multipliser -x-2 ganger \frac{x+2}{x+2}.
\frac{1+\left(-x-2\right)\left(x+2\right)}{x+2}
Siden \frac{1}{x+2} og \frac{\left(-x-2\right)\left(x+2\right)}{x+2} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{1-x^{2}-2x-2x-4}{x+2}
Utfør multiplikasjonene i 1+\left(-x-2\right)\left(x+2\right).
\frac{-3-x^{2}-4x}{x+2}
Kombiner like ledd i 1-x^{2}-2x-2x-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+2}+\frac{\left(-x-2\right)\left(x+2\right)}{x+2})
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Multipliser -x-2 ganger \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\left(-x-2\right)\left(x+2\right)}{x+2})
Siden \frac{1}{x+2} og \frac{\left(-x-2\right)\left(x+2\right)}{x+2} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x^{2}-2x-2x-4}{x+2})
Utfør multiplikasjonene i 1+\left(-x-2\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3-x^{2}-4x}{x+2})
Kombiner like ledd i 1-x^{2}-2x-2x-4.
\frac{\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}-4x^{1}-3)-\left(-x^{2}-4x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)}{\left(x^{1}+2\right)^{2}}
For to differensierbare funksjoner er den deriverte av kvotienten av to funksjoner nevneren multiplisert med den deriverte av telleren minus telleren multiplisert med den deriverte av nevneren, delt på nevneren i andre.
\frac{\left(x^{1}+2\right)\left(2\left(-1\right)x^{2-1}-4x^{1-1}\right)-\left(-x^{2}-4x^{1}-3\right)x^{1-1}}{\left(x^{1}+2\right)^{2}}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
\frac{\left(x^{1}+2\right)\left(-2x^{1}-4x^{0}\right)-\left(-x^{2}-4x^{1}-3\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Forenkle.
\frac{x^{1}\left(-2\right)x^{1}+x^{1}\left(-4\right)x^{0}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}-4x^{1}-3\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Multipliser x^{1}+2 ganger -2x^{1}-4x^{0}.
\frac{x^{1}\left(-2\right)x^{1}+x^{1}\left(-4\right)x^{0}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}x^{0}-4x^{1}x^{0}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Multipliser -x^{2}-4x^{1}-3 ganger x^{0}.
\frac{-2x^{1+1}-4x^{1}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}-4x^{1}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
\frac{-2x^{2}-4x^{1}-4x^{1}-8x^{0}-\left(-x^{2}-4x^{1}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Forenkle.
\frac{-x^{2}-4x^{1}-5x^{0}}{\left(x^{1}+2\right)^{2}}
Kombiner like ledd.
\frac{-x^{2}-4x-5x^{0}}{\left(x+2\right)^{2}}
For ethvert ledd t, t^{1}=t.
\frac{-x^{2}-4x-5}{\left(x+2\right)^{2}}
For ethvert ledd t bortsett fra 0, t^{0}=1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}