Løs for c (complex solution)
\left\{\begin{matrix}c=\frac{m}{8m_{6}}\text{, }&m_{6}\neq 0\\c\in \mathrm{C}\text{, }&m=0\text{ and }m_{6}=0\end{matrix}\right,
Løs for c
\left\{\begin{matrix}c=\frac{m}{8m_{6}}\text{, }&m_{6}\neq 0\\c\in \mathrm{R}\text{, }&m=0\text{ and }m_{6}=0\end{matrix}\right,
Løs for m
m=8cm_{6}
Aksje
Kopiert til utklippstavle
cm_{6}=\frac{1}{8}m
Bytt om sidene, slik at alle variabelledd er på venstre side.
m_{6}c=\frac{m}{8}
Ligningen er i standardform.
\frac{m_{6}c}{m_{6}}=\frac{m}{8m_{6}}
Del begge sidene på m_{6}.
c=\frac{m}{8m_{6}}
Hvis du deler på m_{6}, gjør du om gangingen med m_{6}.
cm_{6}=\frac{1}{8}m
Bytt om sidene, slik at alle variabelledd er på venstre side.
m_{6}c=\frac{m}{8}
Ligningen er i standardform.
\frac{m_{6}c}{m_{6}}=\frac{m}{8m_{6}}
Del begge sidene på m_{6}.
c=\frac{m}{8m_{6}}
Hvis du deler på m_{6}, gjør du om gangingen med m_{6}.
\frac{1}{8}m=cm_{6}
Ligningen er i standardform.
\frac{\frac{1}{8}m}{\frac{1}{8}}=\frac{cm_{6}}{\frac{1}{8}}
Multipliser begge sider med 8.
m=\frac{cm_{6}}{\frac{1}{8}}
Hvis du deler på \frac{1}{8}, gjør du om gangingen med \frac{1}{8}.
m=8cm_{6}
Del cm_{6} på \frac{1}{8} ved å multiplisere cm_{6} med den resiproke verdien av \frac{1}{8}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}