Hopp til hovedinnhold
Evaluer
Tick mark Image
Utvid
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

\frac{1}{\left(x-2\right)\left(-x+2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Faktoriser 4x-x^{2}-4. Faktoriser x^{2}-4.
\frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}-\frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-2\right)\left(-x+2\right) og \left(x-2\right)\left(x+2\right) er \left(x-2\right)\left(x+2\right)\left(-x+2\right). Multipliser \frac{1}{\left(x-2\right)\left(-x+2\right)} ganger \frac{x+2}{x+2}. Multipliser \frac{4}{\left(x-2\right)\left(x+2\right)} ganger \frac{-x+2}{-x+2}.
\frac{x+2-4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Siden \frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} og \frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{x+2+4x-8}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Utfør multiplikasjonene i x+2-4\left(-x+2\right).
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Kombiner like ledd i x+2+4x-8.
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-2\right)\left(x+2\right)\left(-x+2\right) og 2-x er \left(x-2\right)\left(x+2\right)\left(-x+2\right). Multipliser \frac{x}{2-x} ganger \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{5x-6+x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Siden \frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} og \frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{5x-6+x^{3}+2x^{2}-2x^{2}-4x}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Utfør multiplikasjonene i 5x-6+x\left(x-2\right)\left(x+2\right).
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Kombiner like ledd i 5x-6+x^{3}+2x^{2}-2x^{2}-4x.
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-2\right)\left(x+2\right)\left(-x+2\right) og x+2 er \left(x-2\right)\left(x+2\right)\left(-x+2\right). Multipliser \frac{x+1}{x+2} ganger \frac{\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(-x+2\right)}.
\frac{x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Siden \frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} og \frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Utfør multiplikasjonene i x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right).
\frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Kombiner like ledd i x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4.
\frac{\left(3x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Faktoriser uttrykkene som ikke allerede er faktorisert i \frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}.
\frac{3x-5}{\left(x-2\right)\left(-x+2\right)}
Eliminer x+2 i både teller og nevner.
\frac{3x-5}{-x^{2}+4x-4}
Utvid \left(x-2\right)\left(-x+2\right).
\frac{1}{\left(x-2\right)\left(-x+2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Faktoriser 4x-x^{2}-4. Faktoriser x^{2}-4.
\frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}-\frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-2\right)\left(-x+2\right) og \left(x-2\right)\left(x+2\right) er \left(x-2\right)\left(x+2\right)\left(-x+2\right). Multipliser \frac{1}{\left(x-2\right)\left(-x+2\right)} ganger \frac{x+2}{x+2}. Multipliser \frac{4}{\left(x-2\right)\left(x+2\right)} ganger \frac{-x+2}{-x+2}.
\frac{x+2-4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Siden \frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} og \frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{x+2+4x-8}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Utfør multiplikasjonene i x+2-4\left(-x+2\right).
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Kombiner like ledd i x+2+4x-8.
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-2\right)\left(x+2\right)\left(-x+2\right) og 2-x er \left(x-2\right)\left(x+2\right)\left(-x+2\right). Multipliser \frac{x}{2-x} ganger \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{5x-6+x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Siden \frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} og \frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{5x-6+x^{3}+2x^{2}-2x^{2}-4x}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Utfør multiplikasjonene i 5x-6+x\left(x-2\right)\left(x+2\right).
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Kombiner like ledd i 5x-6+x^{3}+2x^{2}-2x^{2}-4x.
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Minste felles multiplum av \left(x-2\right)\left(x+2\right)\left(-x+2\right) og x+2 er \left(x-2\right)\left(x+2\right)\left(-x+2\right). Multipliser \frac{x+1}{x+2} ganger \frac{\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(-x+2\right)}.
\frac{x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Siden \frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} og \frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} har samme nevner, kan du legge dem sammen ved å legge sammen tellerne.
\frac{x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Utfør multiplikasjonene i x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right).
\frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Kombiner like ledd i x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4.
\frac{\left(3x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Faktoriser uttrykkene som ikke allerede er faktorisert i \frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}.
\frac{3x-5}{\left(x-2\right)\left(-x+2\right)}
Eliminer x+2 i både teller og nevner.
\frac{3x-5}{-x^{2}+4x-4}
Utvid \left(x-2\right)\left(-x+2\right).