Hopp til hovedinnhold
Evaluer
Tick mark Image
Utvid
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk den distributive lov til å multiplisere \frac{1}{2}x med 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk den distributive lov til å multiplisere 3 med x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk den distributive lov til å multiplisere 3x+3 med x-1 og kombinere like ledd.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner -\frac{1}{2}x^{2} og 3x^{2} for å få \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk den distributive lov til å multiplisere x med x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Du finner den motsatte av x^{3}-2x^{2}+x ved å finne den motsatte av hvert ledd.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{5}{2}x^{2} og 2x^{2} for å få \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{3}{2}x og -x for å få \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Bruk binomialformelen \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} til å utvide \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Kombiner -x^{3} og x^{3} for å få 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{9}{2}x^{2} og -3x^{2} for å få \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{1}{2}x og 3x for å få \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
Trekk fra 1 fra -3 for å få -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
Bruk den distributive lov til å multiplisere -\frac{1}{2} med 2x-8.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
Kombiner \frac{7}{2}x og -x for å få \frac{5}{2}x.
\frac{5}{2}x+\frac{3}{2}x^{2}
Legg sammen -4 og 4 for å få 0.
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk den distributive lov til å multiplisere \frac{1}{2}x med 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk den distributive lov til å multiplisere 3 med x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk den distributive lov til å multiplisere 3x+3 med x-1 og kombinere like ledd.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner -\frac{1}{2}x^{2} og 3x^{2} for å få \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk binomialformelen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til å utvide \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Bruk den distributive lov til å multiplisere x med x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Du finner den motsatte av x^{3}-2x^{2}+x ved å finne den motsatte av hvert ledd.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{5}{2}x^{2} og 2x^{2} for å få \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{3}{2}x og -x for å få \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Bruk binomialformelen \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} til å utvide \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Kombiner -x^{3} og x^{3} for å få 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{9}{2}x^{2} og -3x^{2} for å få \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{1}{2}x og 3x for å få \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
Trekk fra 1 fra -3 for å få -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
Bruk den distributive lov til å multiplisere -\frac{1}{2} med 2x-8.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
Kombiner \frac{7}{2}x og -x for å få \frac{5}{2}x.
\frac{5}{2}x+\frac{3}{2}x^{2}
Legg sammen -4 og 4 for å få 0.