Differensier med hensyn til x
\frac{2\left(2x^{2}-21\right)}{\left(\left(x-3\right)\left(2x-7\right)\right)^{2}}
Evaluer
-\frac{2x}{\left(x-3\right)\left(2x-7\right)}
Graf
Aksje
Kopiert til utklippstavle
\frac{\left(2x^{2}-13x^{1}+21\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1})-\left(-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}-13x^{1}+21)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
For to differensierbare funksjoner er den deriverte av kvotienten av to funksjoner nevneren multiplisert med den deriverte av telleren minus telleren multiplisert med den deriverte av nevneren, delt på nevneren i andre.
\frac{\left(2x^{2}-13x^{1}+21\right)\left(-2\right)x^{1-1}-\left(-2x^{1}\left(2\times 2x^{2-1}-13x^{1-1}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Den deriverte av et polynom er summen av de deriverte av leddene i uttrykket. Den deriverte av et konstantledd er 0. Den deriverte av ax^{n} er nax^{n-1}.
\frac{\left(2x^{2}-13x^{1}+21\right)\left(-2\right)x^{0}-\left(-2x^{1}\left(4x^{1}-13x^{0}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Forenkle.
\frac{2x^{2}\left(-2\right)x^{0}-13x^{1}\left(-2\right)x^{0}+21\left(-2\right)x^{0}-\left(-2x^{1}\left(4x^{1}-13x^{0}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Multipliser 2x^{2}-13x^{1}+21 ganger -2x^{0}.
\frac{2x^{2}\left(-2\right)x^{0}-13x^{1}\left(-2\right)x^{0}+21\left(-2\right)x^{0}-\left(-2x^{1}\times 4x^{1}-2x^{1}\left(-13\right)x^{0}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Multipliser -2x^{1} ganger 4x^{1}-13x^{0}.
\frac{2\left(-2\right)x^{2}-13\left(-2\right)x^{1}+21\left(-2\right)x^{0}-\left(-2\times 4x^{1+1}-2\left(-13\right)x^{1}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Hvis du vil multiplisere potensen av samme grunntall, kan du legge til eksponentene deres.
\frac{-4x^{2}+26x^{1}-42x^{0}-\left(-8x^{2}+26x^{1}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Forenkle.
\frac{4x^{2}-42x^{0}}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Kombiner like ledd.
\frac{4x^{2}-42x^{0}}{\left(2x^{2}-13x+21\right)^{2}}
For ethvert ledd t, t^{1}=t.
\frac{4x^{2}-42}{\left(2x^{2}-13x+21\right)^{2}}
For ethvert ledd t bortsett fra 0, t^{0}=1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}