Hopp til hovedinnhold
Evaluer
Tick mark Image
Utvid
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\frac{y\times \left(8xy^{3}z^{4}\right)^{3}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Eliminer z i både teller og nevner.
\frac{y\times 8^{3}x^{3}\left(y^{3}\right)^{3}\left(z^{4}\right)^{3}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Utvid \left(8xy^{3}z^{4}\right)^{3}.
\frac{y\times 8^{3}x^{3}y^{9}\left(z^{4}\right)^{3}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 3 for å få 9.
\frac{y\times 8^{3}x^{3}y^{9}z^{12}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 4 og 3 for å få 12.
\frac{y\times 512x^{3}y^{9}z^{12}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Regn ut 8 opphøyd i 3 og få 512.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
For å multiplisere potensene av det samme grunntallet, må du legge til eksponentene deres. Legg til 1 og 9 for å få 10.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times 4^{3}\left(x^{2}\right)^{3}\left(y^{4}\right)^{3}}
Utvid \left(4x^{2}y^{4}\right)^{3}.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times 4^{3}x^{6}\left(y^{4}\right)^{3}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 3 for å få 6.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times 4^{3}x^{6}y^{12}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 4 og 3 for å få 12.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times 64x^{6}y^{12}}
Regn ut 4 opphøyd i 3 og få 64.
\frac{8z^{7}}{y^{2}x^{3}}
Eliminer 64x^{3}z^{5}y^{10} i både teller og nevner.
\frac{y\times \left(8xy^{3}z^{4}\right)^{3}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Eliminer z i både teller og nevner.
\frac{y\times 8^{3}x^{3}\left(y^{3}\right)^{3}\left(z^{4}\right)^{3}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Utvid \left(8xy^{3}z^{4}\right)^{3}.
\frac{y\times 8^{3}x^{3}y^{9}\left(z^{4}\right)^{3}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 3 for å få 9.
\frac{y\times 8^{3}x^{3}y^{9}z^{12}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 4 og 3 for å få 12.
\frac{y\times 512x^{3}y^{9}z^{12}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
Regn ut 8 opphøyd i 3 og få 512.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times \left(4x^{2}y^{4}\right)^{3}}
For å multiplisere potensene av det samme grunntallet, må du legge til eksponentene deres. Legg til 1 og 9 for å få 10.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times 4^{3}\left(x^{2}\right)^{3}\left(y^{4}\right)^{3}}
Utvid \left(4x^{2}y^{4}\right)^{3}.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times 4^{3}x^{6}\left(y^{4}\right)^{3}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 3 for å få 6.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times 4^{3}x^{6}y^{12}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 4 og 3 for å få 12.
\frac{y^{10}\times 512x^{3}z^{12}}{z^{5}\times 64x^{6}y^{12}}
Regn ut 4 opphøyd i 3 og få 64.
\frac{8z^{7}}{y^{2}x^{3}}
Eliminer 64x^{3}z^{5}y^{10} i både teller og nevner.