Evaluer
9
Faktoriser
3^{2}
Aksje
Kopiert til utklippstavle
\frac{\left(\sqrt{3}\right)^{2}+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Alt delt på 1, er lik seg selv.
\frac{3+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadratrota av \sqrt{3} er 3.
\frac{3+4\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Gjør nevneren til \frac{1}{\sqrt{2}} til et rasjonalt tall ved å multiplisere telleren og nevneren med \sqrt{2}.
\frac{3+4\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadratrota av \sqrt{2} er 2.
\frac{3+4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Hvis du vil heve \frac{\sqrt{2}}{2} i en potens, øker du både telleren og nevneren i en potens, og deler deretter.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Uttrykk 4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} som en enkelt brøk.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Gjør nevneren til \frac{2}{\sqrt{3}} til et rasjonalt tall ved å multiplisere telleren og nevneren med \sqrt{3}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{3}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadratrota av \sqrt{3} er 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Hvis du vil heve \frac{2\sqrt{3}}{3} i en potens, øker du både telleren og nevneren i en potens, og deler deretter.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{3\times \left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Uttrykk 3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} som en enkelt brøk.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Eliminer 3 i både teller og nevner.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
Regn ut 0 opphøyd i 2 og få 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+0}{2+2-\left(\sqrt{3}\right)^{2}}
Multipliser 5 med 0 for å få 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Legg sammen 3 og 0 for å få 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Utvid \left(2\sqrt{3}\right)^{2}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Regn ut 2 opphøyd i 2 og få 4.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\times 3}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadratrota av \sqrt{3} er 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{12}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Multipliser 4 med 3 for å få 12.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+4}{2+2-\left(\sqrt{3}\right)^{2}}
Del 12 på 3 for å få 4.
\frac{7+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Legg sammen 3 og 4 for å få 7.
\frac{7+\frac{4\times 2}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadratrota av \sqrt{2} er 2.
\frac{7+\frac{8}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Multipliser 4 med 2 for å få 8.
\frac{7+\frac{8}{4}}{2+2-\left(\sqrt{3}\right)^{2}}
Regn ut 2 opphøyd i 2 og få 4.
\frac{7+2}{2+2-\left(\sqrt{3}\right)^{2}}
Del 8 på 4 for å få 2.
\frac{9}{2+2-\left(\sqrt{3}\right)^{2}}
Legg sammen 7 og 2 for å få 9.
\frac{9}{4-\left(\sqrt{3}\right)^{2}}
Legg sammen 2 og 2 for å få 4.
\frac{9}{4-3}
Kvadratrota av \sqrt{3} er 3.
\frac{9}{1}
Trekk fra 3 fra 4 for å få 1.
9
Alt delt på 1, er lik seg selv.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}