Evaluer
\frac{-2x-4}{25}
Utvid
\frac{-2x-4}{25}
Graf
Aksje
Kopiert til utklippstavle
\frac{\left(7-9\right)\left(5x+10\right)}{5\left(2^{5}-7\right)}
Del \frac{7-9}{5} på \frac{2^{5}-7}{5x+10} ved å multiplisere \frac{7-9}{5} med den resiproke verdien av \frac{2^{5}-7}{5x+10}.
\frac{-2\left(5x+10\right)}{5\left(2^{5}-7\right)}
Trekk fra 9 fra 7 for å få -2.
\frac{-2\left(5x+10\right)}{5\left(32-7\right)}
Regn ut 2 opphøyd i 5 og få 32.
\frac{-2\left(5x+10\right)}{5\times 25}
Trekk fra 7 fra 32 for å få 25.
\frac{-2\left(5x+10\right)}{125}
Multipliser 5 med 25 for å få 125.
\frac{-10x-20}{125}
Bruk den distributive lov til å multiplisere -2 med 5x+10.
\frac{\left(7-9\right)\left(5x+10\right)}{5\left(2^{5}-7\right)}
Del \frac{7-9}{5} på \frac{2^{5}-7}{5x+10} ved å multiplisere \frac{7-9}{5} med den resiproke verdien av \frac{2^{5}-7}{5x+10}.
\frac{-2\left(5x+10\right)}{5\left(2^{5}-7\right)}
Trekk fra 9 fra 7 for å få -2.
\frac{-2\left(5x+10\right)}{5\left(32-7\right)}
Regn ut 2 opphøyd i 5 og få 32.
\frac{-2\left(5x+10\right)}{5\times 25}
Trekk fra 7 fra 32 for å få 25.
\frac{-2\left(5x+10\right)}{125}
Multipliser 5 med 25 for å få 125.
\frac{-10x-20}{125}
Bruk den distributive lov til å multiplisere -2 med 5x+10.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}