Evaluer
a^{6}x^{12}y^{18}
Utvid
a^{6}x^{12}y^{18}
Aksje
Kopiert til utklippstavle
\left(\left(-a\right)^{3}\left(x^{2}\right)^{3}\left(y^{3}\right)^{3}\right)^{2}
Utvid \left(\left(-a\right)x^{2}y^{3}\right)^{3}.
\left(\left(-a\right)^{3}x^{6}\left(y^{3}\right)^{3}\right)^{2}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 3 for å få 6.
\left(\left(-a\right)^{3}x^{6}y^{9}\right)^{2}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 3 for å få 9.
\left(\left(-a\right)^{3}\right)^{2}\left(x^{6}\right)^{2}\left(y^{9}\right)^{2}
Utvid \left(\left(-a\right)^{3}x^{6}y^{9}\right)^{2}.
\left(-a\right)^{6}\left(x^{6}\right)^{2}\left(y^{9}\right)^{2}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 2 for å få 6.
\left(-a\right)^{6}x^{12}\left(y^{9}\right)^{2}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 6 og 2 for å få 12.
\left(-a\right)^{6}x^{12}y^{18}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 9 og 2 for å få 18.
\left(-1\right)^{6}a^{6}x^{12}y^{18}
Utvid \left(-a\right)^{6}.
1a^{6}x^{12}y^{18}
Regn ut -1 opphøyd i 6 og få 1.
a^{6}x^{12}y^{18}
For ethvert ledd t, t\times 1=t og 1t=t.
\left(\left(-a\right)^{3}\left(x^{2}\right)^{3}\left(y^{3}\right)^{3}\right)^{2}
Utvid \left(\left(-a\right)x^{2}y^{3}\right)^{3}.
\left(\left(-a\right)^{3}x^{6}\left(y^{3}\right)^{3}\right)^{2}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 3 for å få 6.
\left(\left(-a\right)^{3}x^{6}y^{9}\right)^{2}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 3 for å få 9.
\left(\left(-a\right)^{3}\right)^{2}\left(x^{6}\right)^{2}\left(y^{9}\right)^{2}
Utvid \left(\left(-a\right)^{3}x^{6}y^{9}\right)^{2}.
\left(-a\right)^{6}\left(x^{6}\right)^{2}\left(y^{9}\right)^{2}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 2 for å få 6.
\left(-a\right)^{6}x^{12}\left(y^{9}\right)^{2}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 6 og 2 for å få 12.
\left(-a\right)^{6}x^{12}y^{18}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 9 og 2 for å få 18.
\left(-1\right)^{6}a^{6}x^{12}y^{18}
Utvid \left(-a\right)^{6}.
1a^{6}x^{12}y^{18}
Regn ut -1 opphøyd i 6 og få 1.
a^{6}x^{12}y^{18}
For ethvert ledd t, t\times 1=t og 1t=t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}