Hopp til hovedinnhold
Evaluer
Tick mark Image
Utvid
Tick mark Image

Lignende problemer fra nettsøk

Aksje

\frac{\left(-\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Utvid \left(-\frac{1}{4}a^{2}bc\right)^{2}.
\frac{\left(-\frac{1}{4}\right)^{2}a^{4}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 2 for å få 4.
\frac{\frac{1}{16}a^{4}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Regn ut -\frac{1}{4} opphøyd i 2 og få \frac{1}{16}.
\frac{\frac{3}{16}a^{4}b^{2}c^{2}c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Multipliser \frac{1}{16} med 3 for å få \frac{3}{16}.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
For å multiplisere potensene av det samme grunntallet, må du legge til eksponentene deres. Legg til 2 og 2 for å få 4.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Kombiner -\frac{1}{2}a^{2}b og \frac{3}{4}a^{2}b for å få \frac{1}{4}a^{2}b.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Utvid \left(\frac{1}{4}a^{2}b\right)^{2}.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}\right)^{2}a^{4}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 2 for å få 4.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\frac{1}{16}a^{4}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Regn ut \frac{1}{4} opphøyd i 2 og få \frac{1}{16}.
\frac{\frac{3}{16}c^{4}}{\frac{1}{16}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Eliminer b^{2}a^{4} i både teller og nevner.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Del \frac{3}{16}c^{4} på \frac{1}{16} ved å multiplisere \frac{3}{16}c^{4} med den resiproke verdien av \frac{1}{16}.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}\left(b^{2}\right)^{2}\left(c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Utvid \left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}b^{4}\left(c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 2 for å få 4.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}b^{4}c^{6}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 2 for å få 6.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}a^{2}b^{4}c^{6}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Regn ut -\frac{1}{2} opphøyd i 2 og få \frac{1}{4}.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}c^{4}}{-\frac{1}{2}}
Eliminer a^{2}c^{2}b^{4} i både teller og nevner.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}c^{4}\times 2}{-1}
Del \frac{1}{4}c^{4} på -\frac{1}{2} ved å multiplisere \frac{1}{4}c^{4} med den resiproke verdien av -\frac{1}{2}.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{2}c^{4}}{-1}
Multipliser \frac{1}{4} med 2 for å få \frac{1}{2}.
\frac{3}{16}c^{4}\times 16-\frac{1}{2}c^{4}
Alt delt på-1 gir det motsatte.
3c^{4}-\frac{1}{2}c^{4}
Multipliser \frac{3}{16} med 16 for å få 3.
\frac{5}{2}c^{4}
Kombiner 3c^{4} og -\frac{1}{2}c^{4} for å få \frac{5}{2}c^{4}.
\frac{\left(-\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Utvid \left(-\frac{1}{4}a^{2}bc\right)^{2}.
\frac{\left(-\frac{1}{4}\right)^{2}a^{4}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 2 for å få 4.
\frac{\frac{1}{16}a^{4}b^{2}c^{2}\times 3c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Regn ut -\frac{1}{4} opphøyd i 2 og få \frac{1}{16}.
\frac{\frac{3}{16}a^{4}b^{2}c^{2}c^{2}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Multipliser \frac{1}{16} med 3 for å få \frac{3}{16}.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(-\frac{1}{2}a^{2}b+\frac{3}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
For å multiplisere potensene av det samme grunntallet, må du legge til eksponentene deres. Legg til 2 og 2 for å få 4.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}a^{2}b\right)^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Kombiner -\frac{1}{2}a^{2}b og \frac{3}{4}a^{2}b for å få \frac{1}{4}a^{2}b.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Utvid \left(\frac{1}{4}a^{2}b\right)^{2}.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\left(\frac{1}{4}\right)^{2}a^{4}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 2 for å få 4.
\frac{\frac{3}{16}a^{4}b^{2}c^{4}}{\frac{1}{16}a^{4}b^{2}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Regn ut \frac{1}{4} opphøyd i 2 og få \frac{1}{16}.
\frac{\frac{3}{16}c^{4}}{\frac{1}{16}}+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Eliminer b^{2}a^{4} i både teller og nevner.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Del \frac{3}{16}c^{4} på \frac{1}{16} ved å multiplisere \frac{3}{16}c^{4} med den resiproke verdien av \frac{1}{16}.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}\left(b^{2}\right)^{2}\left(c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Utvid \left(-\frac{1}{2}ab^{2}c^{3}\right)^{2}.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}b^{4}\left(c^{3}\right)^{2}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 2 og 2 for å få 4.
\frac{3}{16}c^{4}\times 16+\frac{\left(-\frac{1}{2}\right)^{2}a^{2}b^{4}c^{6}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Hvis du vil opphøye potensen til et tall til en annen potens, multipliserer du eksponentene. Multipliser 3 og 2 for å få 6.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}a^{2}b^{4}c^{6}}{-\frac{1}{2}a^{2}b^{4}c^{2}}
Regn ut -\frac{1}{2} opphøyd i 2 og få \frac{1}{4}.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}c^{4}}{-\frac{1}{2}}
Eliminer a^{2}c^{2}b^{4} i både teller og nevner.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{4}c^{4}\times 2}{-1}
Del \frac{1}{4}c^{4} på -\frac{1}{2} ved å multiplisere \frac{1}{4}c^{4} med den resiproke verdien av -\frac{1}{2}.
\frac{3}{16}c^{4}\times 16+\frac{\frac{1}{2}c^{4}}{-1}
Multipliser \frac{1}{4} med 2 for å få \frac{1}{2}.
\frac{3}{16}c^{4}\times 16-\frac{1}{2}c^{4}
Alt delt på-1 gir det motsatte.
3c^{4}-\frac{1}{2}c^{4}
Multipliser \frac{3}{16} med 16 for å få 3.
\frac{5}{2}c^{4}
Kombiner 3c^{4} og -\frac{1}{2}c^{4} for å få \frac{5}{2}c^{4}.