Løs for x
x=\frac{y^{2}-2y-20}{4}
Løs for y (complex solution)
y=\sqrt{4x+21}+1
y=-\sqrt{4x+21}+1
Løs for y
y=\sqrt{4x+21}+1
y=-\sqrt{4x+21}+1\text{, }x\geq -\frac{21}{4}
Graf
Aksje
Kopiert til utklippstavle
-4x-2y-20=-y^{2}
Trekk fra y^{2} fra begge sider. Hvilket som helst tall trukket fra null gir sin negasjon.
-4x-20=-y^{2}+2y
Legg til 2y på begge sider.
-4x=-y^{2}+2y+20
Legg til 20 på begge sider.
-4x=20+2y-y^{2}
Ligningen er i standardform.
\frac{-4x}{-4}=\frac{20+2y-y^{2}}{-4}
Del begge sidene på -4.
x=\frac{20+2y-y^{2}}{-4}
Hvis du deler på -4, gjør du om gangingen med -4.
x=\frac{y^{2}}{4}-\frac{y}{2}-5
Del -y^{2}+2y+20 på -4.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}