Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

n\left(-\frac{1}{2n}-\frac{1}{2n+2}\right)
Naqqas \frac{3}{4} minn \frac{3}{4} biex tikseb 0.
n\left(-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)
Iffattura 2n+2.
n\left(-\frac{n+1}{2n\left(n+1\right)}-\frac{n}{2n\left(n+1\right)}\right)
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 2n u 2\left(n+1\right) huwa 2n\left(n+1\right). Immultiplika -\frac{1}{2n} b'\frac{n+1}{n+1}. Immultiplika \frac{1}{2\left(n+1\right)} b'\frac{n}{n}.
n\times \frac{-\left(n+1\right)-n}{2n\left(n+1\right)}
Billi -\frac{n+1}{2n\left(n+1\right)} u \frac{n}{2n\left(n+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
n\times \frac{-n-1-n}{2n\left(n+1\right)}
Agħmel il-multiplikazzjonijiet fi -\left(n+1\right)-n.
n\times \frac{-2n-1}{2n\left(n+1\right)}
Ikkombina termini simili f'-n-1-n.
\frac{n\left(-2n-1\right)}{2n\left(n+1\right)}
Esprimi n\times \frac{-2n-1}{2n\left(n+1\right)} bħala frazzjoni waħda.
\frac{-2n-1}{2\left(n+1\right)}
Annulla n fin-numeratur u d-denominatur.
\frac{-2n-1}{2n+2}
Uża l-propjetà distributtiva biex timmultiplika 2 b'n+1.
n\left(-\frac{1}{2n}-\frac{1}{2n+2}\right)
Naqqas \frac{3}{4} minn \frac{3}{4} biex tikseb 0.
n\left(-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)
Iffattura 2n+2.
n\left(-\frac{n+1}{2n\left(n+1\right)}-\frac{n}{2n\left(n+1\right)}\right)
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 2n u 2\left(n+1\right) huwa 2n\left(n+1\right). Immultiplika -\frac{1}{2n} b'\frac{n+1}{n+1}. Immultiplika \frac{1}{2\left(n+1\right)} b'\frac{n}{n}.
n\times \frac{-\left(n+1\right)-n}{2n\left(n+1\right)}
Billi -\frac{n+1}{2n\left(n+1\right)} u \frac{n}{2n\left(n+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
n\times \frac{-n-1-n}{2n\left(n+1\right)}
Agħmel il-multiplikazzjonijiet fi -\left(n+1\right)-n.
n\times \frac{-2n-1}{2n\left(n+1\right)}
Ikkombina termini simili f'-n-1-n.
\frac{n\left(-2n-1\right)}{2n\left(n+1\right)}
Esprimi n\times \frac{-2n-1}{2n\left(n+1\right)} bħala frazzjoni waħda.
\frac{-2n-1}{2\left(n+1\right)}
Annulla n fin-numeratur u d-denominatur.
\frac{-2n-1}{2n+2}
Uża l-propjetà distributtiva biex timmultiplika 2 b'n+1.