Evalwa
-\frac{2n+1}{2\left(n+1\right)}
Espandi
-\frac{2n+1}{2\left(n+1\right)}
Sehem
Ikkupjat fuq il-klibbord
n\left(-\frac{1}{2n}-\frac{1}{2n+2}\right)
Naqqas \frac{3}{4} minn \frac{3}{4} biex tikseb 0.
n\left(-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)
Iffattura 2n+2.
n\left(-\frac{n+1}{2n\left(n+1\right)}-\frac{n}{2n\left(n+1\right)}\right)
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 2n u 2\left(n+1\right) huwa 2n\left(n+1\right). Immultiplika -\frac{1}{2n} b'\frac{n+1}{n+1}. Immultiplika \frac{1}{2\left(n+1\right)} b'\frac{n}{n}.
n\times \frac{-\left(n+1\right)-n}{2n\left(n+1\right)}
Billi -\frac{n+1}{2n\left(n+1\right)} u \frac{n}{2n\left(n+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
n\times \frac{-n-1-n}{2n\left(n+1\right)}
Agħmel il-multiplikazzjonijiet fi -\left(n+1\right)-n.
n\times \frac{-2n-1}{2n\left(n+1\right)}
Ikkombina termini simili f'-n-1-n.
\frac{n\left(-2n-1\right)}{2n\left(n+1\right)}
Esprimi n\times \frac{-2n-1}{2n\left(n+1\right)} bħala frazzjoni waħda.
\frac{-2n-1}{2\left(n+1\right)}
Annulla n fin-numeratur u d-denominatur.
\frac{-2n-1}{2n+2}
Uża l-propjetà distributtiva biex timmultiplika 2 b'n+1.
n\left(-\frac{1}{2n}-\frac{1}{2n+2}\right)
Naqqas \frac{3}{4} minn \frac{3}{4} biex tikseb 0.
n\left(-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)
Iffattura 2n+2.
n\left(-\frac{n+1}{2n\left(n+1\right)}-\frac{n}{2n\left(n+1\right)}\right)
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 2n u 2\left(n+1\right) huwa 2n\left(n+1\right). Immultiplika -\frac{1}{2n} b'\frac{n+1}{n+1}. Immultiplika \frac{1}{2\left(n+1\right)} b'\frac{n}{n}.
n\times \frac{-\left(n+1\right)-n}{2n\left(n+1\right)}
Billi -\frac{n+1}{2n\left(n+1\right)} u \frac{n}{2n\left(n+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
n\times \frac{-n-1-n}{2n\left(n+1\right)}
Agħmel il-multiplikazzjonijiet fi -\left(n+1\right)-n.
n\times \frac{-2n-1}{2n\left(n+1\right)}
Ikkombina termini simili f'-n-1-n.
\frac{n\left(-2n-1\right)}{2n\left(n+1\right)}
Esprimi n\times \frac{-2n-1}{2n\left(n+1\right)} bħala frazzjoni waħda.
\frac{-2n-1}{2\left(n+1\right)}
Annulla n fin-numeratur u d-denominatur.
\frac{-2n-1}{2n+2}
Uża l-propjetà distributtiva biex timmultiplika 2 b'n+1.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}