I = \rho _ { 3 } \sqrt { 2 m + 1 } d x
Solvi għal d (complex solution)
\left\{\begin{matrix}d=\frac{\left(2m+1\right)^{-\frac{1}{2}}I}{x\rho _{3}}\text{, }&x\neq 0\text{ and }m\neq -\frac{1}{2}\text{ and }\rho _{3}\neq 0\\d\in \mathrm{C}\text{, }&\left(x=0\text{ or }m=-\frac{1}{2}\text{ or }\rho _{3}=0\right)\text{ and }I=0\end{matrix}\right.
Solvi għal d
\left\{\begin{matrix}d=\frac{I}{\sqrt{2m+1}x\rho _{3}}\text{, }&x\neq 0\text{ and }\rho _{3}\neq 0\text{ and }m>-\frac{1}{2}\\d\in \mathrm{R}\text{, }&\left(I=0\text{ and }\rho _{3}=0\text{ and }x\neq 0\text{ and }m>-\frac{1}{2}\right)\text{ or }\left(I=0\text{ and }m=-\frac{1}{2}\right)\text{ or }\left(I=0\text{ and }m\geq -\frac{1}{2}\text{ and }x=0\right)\end{matrix}\right.
Solvi għal I (complex solution)
I=\sqrt{2m+1}dx\rho _{3}
Solvi għal I
I=\sqrt{2m+1}dx\rho _{3}
m\geq -\frac{1}{2}
Graff
Sehem
Ikkupjat fuq il-klibbord
\rho _{3}\sqrt{2m+1}dx=I
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\sqrt{2m+1}x\rho _{3}d=I
L-ekwazzjoni hija f'forma standard.
\frac{\sqrt{2m+1}x\rho _{3}d}{\sqrt{2m+1}x\rho _{3}}=\frac{I}{\sqrt{2m+1}x\rho _{3}}
Iddividi ż-żewġ naħat b'\rho _{3}\sqrt{2m+1}x.
d=\frac{I}{\sqrt{2m+1}x\rho _{3}}
Meta tiddividi b'\rho _{3}\sqrt{2m+1}x titneħħa l-multiplikazzjoni b'\rho _{3}\sqrt{2m+1}x.
d=\frac{\left(2m+1\right)^{-\frac{1}{2}}I}{x\rho _{3}}
Iddividi I b'\rho _{3}\sqrt{2m+1}x.
\rho _{3}\sqrt{2m+1}dx=I
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\sqrt{2m+1}x\rho _{3}d=I
L-ekwazzjoni hija f'forma standard.
\frac{\sqrt{2m+1}x\rho _{3}d}{\sqrt{2m+1}x\rho _{3}}=\frac{I}{\sqrt{2m+1}x\rho _{3}}
Iddividi ż-żewġ naħat b'\rho _{3}\sqrt{2m+1}x.
d=\frac{I}{\sqrt{2m+1}x\rho _{3}}
Meta tiddividi b'\rho _{3}\sqrt{2m+1}x titneħħa l-multiplikazzjoni b'\rho _{3}\sqrt{2m+1}x.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}