Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. a
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

66+16+26^{2}-4+3a^{2}-206
Ikkalkula 4 bil-power ta' 2 u tikseb 16.
82+26^{2}-4+3a^{2}-206
Żid 66 u 16 biex tikseb 82.
82+676-4+3a^{2}-206
Ikkalkula 26 bil-power ta' 2 u tikseb 676.
758-4+3a^{2}-206
Żid 82 u 676 biex tikseb 758.
754+3a^{2}-206
Naqqas 4 minn 758 biex tikseb 754.
548+3a^{2}
Naqqas 206 minn 754 biex tikseb 548.
\frac{\mathrm{d}}{\mathrm{d}a}(66+16+26^{2}-4+3a^{2}-206)
Ikkalkula 4 bil-power ta' 2 u tikseb 16.
\frac{\mathrm{d}}{\mathrm{d}a}(82+26^{2}-4+3a^{2}-206)
Żid 66 u 16 biex tikseb 82.
\frac{\mathrm{d}}{\mathrm{d}a}(82+676-4+3a^{2}-206)
Ikkalkula 26 bil-power ta' 2 u tikseb 676.
\frac{\mathrm{d}}{\mathrm{d}a}(758-4+3a^{2}-206)
Żid 82 u 676 biex tikseb 758.
\frac{\mathrm{d}}{\mathrm{d}a}(754+3a^{2}-206)
Naqqas 4 minn 758 biex tikseb 754.
\frac{\mathrm{d}}{\mathrm{d}a}(548+3a^{2})
Naqqas 206 minn 754 biex tikseb 548.
2\times 3a^{2-1}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
6a^{2-1}
Immultiplika 2 b'3.
6a^{1}
Naqqas 1 minn 2.
6a
Għal kwalunkwe terminu t, t^{1}=t.