Solvi għal c
c=\sqrt{39}\approx 6.244997998
c=-\sqrt{39}\approx -6.244997998
Sehem
Ikkupjat fuq il-klibbord
39=c^{2}-0c\times 74
Immultiplika 10 u 0 biex tikseb 0.
39=c^{2}-0c
Immultiplika 0 u 74 biex tikseb 0.
39=c^{2}-0
Xi ħaġa mmultiplikata b'żero jirriżulta f'żero.
c^{2}-0=39
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
c^{2}=39+0
Żid 0 maż-żewġ naħat.
c^{2}=39
Żid 39 u 0 biex tikseb 39.
c=\sqrt{39} c=-\sqrt{39}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
39=c^{2}-0c\times 74
Immultiplika 10 u 0 biex tikseb 0.
39=c^{2}-0c
Immultiplika 0 u 74 biex tikseb 0.
39=c^{2}-0
Xi ħaġa mmultiplikata b'żero jirriżulta f'żero.
c^{2}-0=39
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
c^{2}-0-39=0
Naqqas 39 miż-żewġ naħat.
c^{2}-39=0
Erġa' ordna t-termini.
c=\frac{0±\sqrt{0^{2}-4\left(-39\right)}}{2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 1 għal a, 0 għal b, u -39 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-39\right)}}{2}
Ikkwadra 0.
c=\frac{0±\sqrt{156}}{2}
Immultiplika -4 b'-39.
c=\frac{0±2\sqrt{39}}{2}
Ħu l-għerq kwadrat ta' 156.
c=\sqrt{39}
Issa solvi l-ekwazzjoni c=\frac{0±2\sqrt{39}}{2} fejn ± hija plus.
c=-\sqrt{39}
Issa solvi l-ekwazzjoni c=\frac{0±2\sqrt{39}}{2} fejn ± hija minus.
c=\sqrt{39} c=-\sqrt{39}
L-ekwazzjoni issa solvuta.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}