Aqbeż għall-kontenut ewlieni
Fattur
Tick mark Image
Evalwa
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

a+b=-12 ab=27\left(-4\right)=-108
Iffattura l-espressjoni bl-iggruppar. L-ewwel, l-espressjoni teħtieġ tinkiteb mill-ġdid bħala 27x^{2}+ax+bx-4. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa negattiv, in-numru negattiv għandu l-valur assolut akbar mill-pożittiv. Elenka l-pari kollha bħal dawn li jagħtu prodott -108.
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
Ikkalkula s-somma għal kull par.
a=-18 b=6
Is-soluzzjoni hija l-par li jagħti s-somma -12.
\left(27x^{2}-18x\right)+\left(6x-4\right)
Erġa' ikteb 27x^{2}-12x-4 bħala \left(27x^{2}-18x\right)+\left(6x-4\right).
9x\left(3x-2\right)+2\left(3x-2\right)
Fattur 9x fl-ewwel u 2 fit-tieni grupp.
\left(3x-2\right)\left(9x+2\right)
Iffattura 'l barra t-terminu komuni 3x-2 bl-użu ta' propjetà distributtiva.
27x^{2}-12x-4=0
Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 27\left(-4\right)}}{2\times 27}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 27\left(-4\right)}}{2\times 27}
Ikkwadra -12.
x=\frac{-\left(-12\right)±\sqrt{144-108\left(-4\right)}}{2\times 27}
Immultiplika -4 b'27.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2\times 27}
Immultiplika -108 b'-4.
x=\frac{-\left(-12\right)±\sqrt{576}}{2\times 27}
Żid 144 ma' 432.
x=\frac{-\left(-12\right)±24}{2\times 27}
Ħu l-għerq kwadrat ta' 576.
x=\frac{12±24}{2\times 27}
L-oppost ta' -12 huwa 12.
x=\frac{12±24}{54}
Immultiplika 2 b'27.
x=\frac{36}{54}
Issa solvi l-ekwazzjoni x=\frac{12±24}{54} fejn ± hija plus. Żid 12 ma' 24.
x=\frac{2}{3}
Naqqas il-frazzjoni \frac{36}{54} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 18.
x=-\frac{12}{54}
Issa solvi l-ekwazzjoni x=\frac{12±24}{54} fejn ± hija minus. Naqqas 24 minn 12.
x=-\frac{2}{9}
Naqqas il-frazzjoni \frac{-12}{54} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 6.
27x^{2}-12x-4=27\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{2}{9}\right)\right)
Iffattura l-espressjoni oriġinali permezz ta’ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Issostitwixxi \frac{2}{3} għal x_{1} u -\frac{2}{9} għal x_{2}.
27x^{2}-12x-4=27\left(x-\frac{2}{3}\right)\left(x+\frac{2}{9}\right)
Issimplifika l-espressjonijiet kollha tal-formola p-\left(-q\right) sa p+q.
27x^{2}-12x-4=27\times \frac{3x-2}{3}\left(x+\frac{2}{9}\right)
Naqqas \frac{2}{3} minn x billi ssib denominatur komuni u tnaqqas in-numerators. Imbagħad naqqas il-frazzjoni għall-inqas termini jekk possibbli.
27x^{2}-12x-4=27\times \frac{3x-2}{3}\times \frac{9x+2}{9}
Żid \frac{2}{9} ma' x biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
27x^{2}-12x-4=27\times \frac{\left(3x-2\right)\left(9x+2\right)}{3\times 9}
Immultiplika \frac{3x-2}{3} b'\frac{9x+2}{9} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur. Imbagħad naqqas il-frazzjoni għall-inqas termini jekk possibbli.
27x^{2}-12x-4=27\times \frac{\left(3x-2\right)\left(9x+2\right)}{27}
Immultiplika 3 b'9.
27x^{2}-12x-4=\left(3x-2\right)\left(9x+2\right)
Ikkanċella l-akbar fattur komuni 27 f'27 u 27.