Evalwa
\frac{2x^{2}+5x+5}{x+1}
Iddifferenzja w.r.t. x
\frac{2x\left(x+2\right)}{\left(x+1\right)^{2}}
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{\left(2x+3\right)\left(x+1\right)}{x+1}+\frac{2}{x+1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 2x+3 b'\frac{x+1}{x+1}.
\frac{\left(2x+3\right)\left(x+1\right)+2}{x+1}
Billi \frac{\left(2x+3\right)\left(x+1\right)}{x+1} u \frac{2}{x+1} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2x^{2}+2x+3x+3+2}{x+1}
Agħmel il-multiplikazzjonijiet fi \left(2x+3\right)\left(x+1\right)+2.
\frac{2x^{2}+5x+5}{x+1}
Ikkombina termini simili f'2x^{2}+2x+3x+3+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(2x+3\right)\left(x+1\right)}{x+1}+\frac{2}{x+1})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 2x+3 b'\frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(2x+3\right)\left(x+1\right)+2}{x+1})
Billi \frac{\left(2x+3\right)\left(x+1\right)}{x+1} u \frac{2}{x+1} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}+2x+3x+3+2}{x+1})
Agħmel il-multiplikazzjonijiet fi \left(2x+3\right)\left(x+1\right)+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}+5x+5}{x+1})
Ikkombina termini simili f'2x^{2}+2x+3x+3+2.
\frac{\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+5x^{1}+5)-\left(2x^{2}+5x^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)}{\left(x^{1}+1\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{1}+1\right)\left(2\times 2x^{2-1}+5x^{1-1}\right)-\left(2x^{2}+5x^{1}+5\right)x^{1-1}}{\left(x^{1}+1\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{1}+1\right)\left(4x^{1}+5x^{0}\right)-\left(2x^{2}+5x^{1}+5\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Issimplifika.
\frac{x^{1}\times 4x^{1}+x^{1}\times 5x^{0}+4x^{1}+5x^{0}-\left(2x^{2}+5x^{1}+5\right)x^{0}}{\left(x^{1}+1\right)^{2}}
Immultiplika x^{1}+1 b'4x^{1}+5x^{0}.
\frac{x^{1}\times 4x^{1}+x^{1}\times 5x^{0}+4x^{1}+5x^{0}-\left(2x^{2}x^{0}+5x^{1}x^{0}+5x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Immultiplika 2x^{2}+5x^{1}+5 b'x^{0}.
\frac{4x^{1+1}+5x^{1}+4x^{1}+5x^{0}-\left(2x^{2}+5x^{1}+5x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{4x^{2}+5x^{1}+4x^{1}+5x^{0}-\left(2x^{2}+5x^{1}+5x^{0}\right)}{\left(x^{1}+1\right)^{2}}
Issimplifika.
\frac{2x^{2}+4x^{1}}{\left(x^{1}+1\right)^{2}}
Ikkombina termini simili.
\frac{2x^{2}+4x}{\left(x+1\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}