Evalwa
\frac{7\sqrt{3}}{6}\approx 2.020725942
Sehem
Ikkupjat fuq il-klibbord
\frac{12\times \frac{\sqrt{1}}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{1}{6}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{1}}{\sqrt{6}}.
\frac{12\times \frac{1}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Ikkalkula l-għerq kwadrat ta' 1 u ikseb 1.
\frac{12\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Irrazzjonalizza d-denominatur tal-\frac{1}{\sqrt{6}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{6}.
\frac{12\times \frac{\sqrt{6}}{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Il-kwadrat ta' \sqrt{6} huwa 6.
\frac{2\sqrt{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Ikkanċella l-akbar fattur komuni 6 f'12 u 6.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{\sqrt{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{7}{12}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{7}}{\sqrt{12}}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{2\sqrt{3}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Iffattura 12=2^{2}\times 3. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 3} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{3}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{7}}{2\sqrt{3}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{3}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Biex timmultiplika \sqrt{7} u \sqrt{3}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Immultiplika 2 u 3 biex tikseb 6.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{20+1}{2}}
Immultiplika 10 u 2 biex tikseb 20.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{21}{2}}
Żid 20 u 1 biex tikseb 21.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}}{\sqrt{2}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{21}{2}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{21}}{\sqrt{2}}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{21}}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{2}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Biex timmultiplika \sqrt{21} u \sqrt{2}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{2\sqrt{6}\sqrt{21}}{3\times 6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Immultiplika \frac{2\sqrt{6}}{3} b'\frac{\sqrt{21}}{6} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\sqrt{6}\sqrt{21}}{3\times 3}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Annulla 2 fin-numeratur u d-denominatur.
\frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2}\times \frac{\sqrt{42}}{2}
Immultiplika \frac{\sqrt{6}\sqrt{21}}{3\times 3} b'\frac{1}{2} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\sqrt{6}\sqrt{21}\sqrt{42}}{3\times 3\times 2\times 2}
Immultiplika \frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2} b'\frac{\sqrt{42}}{2} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\sqrt{6}\sqrt{21}\sqrt{6}\sqrt{7}}{3\times 3\times 2\times 2}
Iffattura 42=6\times 7. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{6\times 7} bħala l-prodott tal-għeruq kwadrati \sqrt{6}\sqrt{7}.
\frac{6\sqrt{21}\sqrt{7}}{3\times 3\times 2\times 2}
Immultiplika \sqrt{6} u \sqrt{6} biex tikseb 6.
\frac{6\sqrt{7}\sqrt{3}\sqrt{7}}{3\times 3\times 2\times 2}
Iffattura 21=7\times 3. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{7\times 3} bħala l-prodott tal-għeruq kwadrati \sqrt{7}\sqrt{3}.
\frac{6\times 7\sqrt{3}}{3\times 3\times 2\times 2}
Immultiplika \sqrt{7} u \sqrt{7} biex tikseb 7.
\frac{42\sqrt{3}}{3\times 3\times 2\times 2}
Immultiplika 6 u 7 biex tikseb 42.
\frac{42\sqrt{3}}{9\times 2\times 2}
Immultiplika 3 u 3 biex tikseb 9.
\frac{42\sqrt{3}}{18\times 2}
Immultiplika 9 u 2 biex tikseb 18.
\frac{42\sqrt{3}}{36}
Immultiplika 18 u 2 biex tikseb 36.
\frac{7}{6}\sqrt{3}
Iddividi 42\sqrt{3} b'36 biex tikseb\frac{7}{6}\sqrt{3}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}