Aqbeż għall-kontenut ewlieni
Fattur
Tick mark Image
Evalwa
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

2\left(-2x^{2}+5x+3\right)
Iffattura 'l barra 2.
a+b=5 ab=-2\times 3=-6
Ikkunsidra li -2x^{2}+5x+3. Iffattura l-espressjoni bl-iggruppar. L-ewwel, l-espressjoni teħtieġ tinkiteb mill-ġdid bħala -2x^{2}+ax+bx+3. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
-1,6 -2,3
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa pożittiv, in-numru pożittiv għandu l-valur assolut akbar min-negattiv. Elenka l-pari kollha bħal dawn li jagħtu prodott -6.
-1+6=5 -2+3=1
Ikkalkula s-somma għal kull par.
a=6 b=-1
Is-soluzzjoni hija l-par li jagħti s-somma 5.
\left(-2x^{2}+6x\right)+\left(-x+3\right)
Erġa' ikteb -2x^{2}+5x+3 bħala \left(-2x^{2}+6x\right)+\left(-x+3\right).
2x\left(-x+3\right)-x+3
Iffattura ' l barra 2x fil- -2x^{2}+6x.
\left(-x+3\right)\left(2x+1\right)
Iffattura 'l barra t-terminu komuni -x+3 bl-użu ta' propjetà distributtiva.
2\left(-x+3\right)\left(2x+1\right)
Erġa' ikteb l-espressjoni ffatturata kompluta.
-4x^{2}+10x+6=0
Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\left(-4\right)\times 6}}{2\left(-4\right)}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-10±\sqrt{100-4\left(-4\right)\times 6}}{2\left(-4\right)}
Ikkwadra 10.
x=\frac{-10±\sqrt{100+16\times 6}}{2\left(-4\right)}
Immultiplika -4 b'-4.
x=\frac{-10±\sqrt{100+96}}{2\left(-4\right)}
Immultiplika 16 b'6.
x=\frac{-10±\sqrt{196}}{2\left(-4\right)}
Żid 100 ma' 96.
x=\frac{-10±14}{2\left(-4\right)}
Ħu l-għerq kwadrat ta' 196.
x=\frac{-10±14}{-8}
Immultiplika 2 b'-4.
x=\frac{4}{-8}
Issa solvi l-ekwazzjoni x=\frac{-10±14}{-8} fejn ± hija plus. Żid -10 ma' 14.
x=-\frac{1}{2}
Naqqas il-frazzjoni \frac{4}{-8} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 4.
x=-\frac{24}{-8}
Issa solvi l-ekwazzjoni x=\frac{-10±14}{-8} fejn ± hija minus. Naqqas 14 minn -10.
x=3
Iddividi -24 b'-8.
-4x^{2}+10x+6=-4\left(x-\left(-\frac{1}{2}\right)\right)\left(x-3\right)
Iffattura l-espressjoni oriġinali permezz ta’ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Issostitwixxi -\frac{1}{2} għal x_{1} u 3 għal x_{2}.
-4x^{2}+10x+6=-4\left(x+\frac{1}{2}\right)\left(x-3\right)
Issimplifika l-espressjonijiet kollha tal-formola p-\left(-q\right) sa p+q.
-4x^{2}+10x+6=-4\times \frac{-2x-1}{-2}\left(x-3\right)
Żid \frac{1}{2} ma' x biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
-4x^{2}+10x+6=2\left(-2x-1\right)\left(x-3\right)
Ikkanċella l-akbar fattur komuni 2 f'-4 u 2.