Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

a+b+c-\left(2a^{2}+ab-2ba-b^{2}-2ca-cb\right)-\left(b+c\right)\left(a+b\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' a-b-c b'kull terminu ta' 2a+b.
a+b+c-\left(2a^{2}-ab-b^{2}-2ca-cb\right)-\left(b+c\right)\left(a+b\right)
Ikkombina ab u -2ba biex tikseb -ab.
a+b+c-2a^{2}-\left(-ab\right)-\left(-b^{2}\right)-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
Biex issib l-oppost ta' 2a^{2}-ab-b^{2}-2ca-cb, sib l-oppost ta' kull terminu.
a+b+c-2a^{2}+ab-\left(-b^{2}\right)-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
L-oppost ta' -ab huwa ab.
a+b+c-2a^{2}+ab+b^{2}-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
L-oppost ta' -b^{2} huwa b^{2}.
a+b+c-2a^{2}+ab+b^{2}+2ca-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
L-oppost ta' -2ca huwa 2ca.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-\left(b+c\right)\left(a+b\right)
L-oppost ta' -cb huwa cb.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-\left(ba+b^{2}+ca+cb\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' b+c b'kull terminu ta' a+b.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-ba-b^{2}-ca-cb
Biex issib l-oppost ta' ba+b^{2}+ca+cb, sib l-oppost ta' kull terminu.
a+b+c-2a^{2}+b^{2}+2ca+cb-b^{2}-ca-cb
Ikkombina ab u -ba biex tikseb 0.
a+b+c-2a^{2}+2ca+cb-ca-cb
Ikkombina b^{2} u -b^{2} biex tikseb 0.
a+b+c-2a^{2}+ca+cb-cb
Ikkombina 2ca u -ca biex tikseb ca.
a+b+c-2a^{2}+ca
Ikkombina cb u -cb biex tikseb 0.
a+b+c-\left(2a^{2}+ab-2ba-b^{2}-2ca-cb\right)-\left(b+c\right)\left(a+b\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' a-b-c b'kull terminu ta' 2a+b.
a+b+c-\left(2a^{2}-ab-b^{2}-2ca-cb\right)-\left(b+c\right)\left(a+b\right)
Ikkombina ab u -2ba biex tikseb -ab.
a+b+c-2a^{2}-\left(-ab\right)-\left(-b^{2}\right)-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
Biex issib l-oppost ta' 2a^{2}-ab-b^{2}-2ca-cb, sib l-oppost ta' kull terminu.
a+b+c-2a^{2}+ab-\left(-b^{2}\right)-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
L-oppost ta' -ab huwa ab.
a+b+c-2a^{2}+ab+b^{2}-\left(-2ca\right)-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
L-oppost ta' -b^{2} huwa b^{2}.
a+b+c-2a^{2}+ab+b^{2}+2ca-\left(-cb\right)-\left(b+c\right)\left(a+b\right)
L-oppost ta' -2ca huwa 2ca.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-\left(b+c\right)\left(a+b\right)
L-oppost ta' -cb huwa cb.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-\left(ba+b^{2}+ca+cb\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' b+c b'kull terminu ta' a+b.
a+b+c-2a^{2}+ab+b^{2}+2ca+cb-ba-b^{2}-ca-cb
Biex issib l-oppost ta' ba+b^{2}+ca+cb, sib l-oppost ta' kull terminu.
a+b+c-2a^{2}+b^{2}+2ca+cb-b^{2}-ca-cb
Ikkombina ab u -ba biex tikseb 0.
a+b+c-2a^{2}+2ca+cb-ca-cb
Ikkombina b^{2} u -b^{2} biex tikseb 0.
a+b+c-2a^{2}+ca+cb-cb
Ikkombina 2ca u -ca biex tikseb ca.
a+b+c-2a^{2}+ca
Ikkombina cb u -cb biex tikseb 0.