Ivverifika
falza
Sehem
Ikkupjat fuq il-klibbord
\left(\frac{-7}{11}\right)^{21}=\left(\frac{-7}{11}\right)^{13}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom. Żid 13 u 8 biex tikseb 21.
\left(-\frac{7}{11}\right)^{21}=\left(\frac{-7}{11}\right)^{13}
Frazzjoni \frac{-7}{11} tista' tinkiteb mill-ġdid bħala -\frac{7}{11} bl-estrazzjoni tas-sinjal negattiv.
-\frac{558545864083284007}{7400249944258160101211}=\left(\frac{-7}{11}\right)^{13}
Ikkalkula -\frac{7}{11} bil-power ta' 21 u tikseb -\frac{558545864083284007}{7400249944258160101211}.
-\frac{558545864083284007}{7400249944258160101211}=\left(-\frac{7}{11}\right)^{13}
Frazzjoni \frac{-7}{11} tista' tinkiteb mill-ġdid bħala -\frac{7}{11} bl-estrazzjoni tas-sinjal negattiv.
-\frac{558545864083284007}{7400249944258160101211}=-\frac{96889010407}{34522712143931}
Ikkalkula -\frac{7}{11} bil-power ta' 13 u tikseb -\frac{96889010407}{34522712143931}.
-\frac{558545864083284007}{7400249944258160101211}=-\frac{20769019852041874567}{7400249944258160101211}
L-inqas multipli komuni ta' 7400249944258160101211 u 34522712143931 huwa 7400249944258160101211. Ikkonverti -\frac{558545864083284007}{7400249944258160101211} u -\frac{96889010407}{34522712143931} fi frazzjonijiet bid-denominatur 7400249944258160101211.
\text{false}
Qabbel -\frac{558545864083284007}{7400249944258160101211} u -\frac{20769019852041874567}{7400249944258160101211}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}