Evalwa
\frac{3\sqrt{14}}{55}\approx 0.204090403
Sehem
Ikkupjat fuq il-klibbord
\frac{\sqrt{\frac{5+3}{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Immultiplika 1 u 5 biex tikseb 5.
\frac{\sqrt{\frac{8}{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Żid 5 u 3 biex tikseb 8.
\frac{\frac{\sqrt{8}}{\sqrt{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{8}{5}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{8}}{\sqrt{5}}.
\frac{\frac{2\sqrt{2}}{\sqrt{5}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Iffattura 8=2^{2}\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{2}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{\frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Irrazzjonalizza d-denominatur tal-\frac{2\sqrt{2}}{\sqrt{5}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{5}.
\frac{\frac{2\sqrt{2}\sqrt{5}}{5}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{\frac{2\sqrt{10}}{5}}{22}\sqrt{\frac{1}{5}}\sqrt{63}
Biex timmultiplika \sqrt{2} u \sqrt{5}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{2\sqrt{10}}{5\times 22}\sqrt{\frac{1}{5}}\sqrt{63}
Esprimi \frac{\frac{2\sqrt{10}}{5}}{22} bħala frazzjoni waħda.
\frac{\sqrt{10}}{5\times 11}\sqrt{\frac{1}{5}}\sqrt{63}
Annulla 2 fin-numeratur u d-denominatur.
\frac{\sqrt{10}}{55}\sqrt{\frac{1}{5}}\sqrt{63}
Immultiplika 5 u 11 biex tikseb 55.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{1}}{\sqrt{5}}\sqrt{63}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{1}{5}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{1}}{\sqrt{5}}.
\frac{\sqrt{10}}{55}\times \frac{1}{\sqrt{5}}\sqrt{63}
Ikkalkula l-għerq kwadrat ta' 1 u ikseb 1.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{63}
Irrazzjonalizza d-denominatur tal-\frac{1}{\sqrt{5}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{5}.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{5}\sqrt{63}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{\sqrt{10}}{55}\times \frac{\sqrt{5}}{5}\times 3\sqrt{7}
Iffattura 63=3^{2}\times 7. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{3^{2}\times 7} bħala l-prodott tal-għeruq kwadrati \sqrt{3^{2}}\sqrt{7}. Ħu l-għerq kwadrat ta' 3^{2}.
\frac{\sqrt{10}\sqrt{5}}{55\times 5}\times 3\sqrt{7}
Immultiplika \frac{\sqrt{10}}{55} b'\frac{\sqrt{5}}{5} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\sqrt{10}\sqrt{5}\times 3}{55\times 5}\sqrt{7}
Esprimi \frac{\sqrt{10}\sqrt{5}}{55\times 5}\times 3 bħala frazzjoni waħda.
\frac{\sqrt{10}\sqrt{5}\times 3\sqrt{7}}{55\times 5}
Esprimi \frac{\sqrt{10}\sqrt{5}\times 3}{55\times 5}\sqrt{7} bħala frazzjoni waħda.
\frac{\sqrt{5}\sqrt{2}\sqrt{5}\times 3\sqrt{7}}{55\times 5}
Iffattura 10=5\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{5\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{5}\sqrt{2}.
\frac{5\sqrt{2}\times 3\sqrt{7}}{55\times 5}
Immultiplika \sqrt{5} u \sqrt{5} biex tikseb 5.
\frac{15\sqrt{2}\sqrt{7}}{55\times 5}
Immultiplika 5 u 3 biex tikseb 15.
\frac{15\sqrt{14}}{55\times 5}
Biex timmultiplika \sqrt{2} u \sqrt{7}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{15\sqrt{14}}{275}
Immultiplika 55 u 5 biex tikseb 275.
\frac{3}{55}\sqrt{14}
Iddividi 15\sqrt{14} b'275 biex tikseb\frac{3}{55}\sqrt{14}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}