Aqbeż għall-kontenut ewlieni
Solvi għal b
Tick mark Image
Solvi għal a
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\sqrt{b}\left(1-\left(\sin(a)\right)^{2}\right)=\sin(a)
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\sqrt{b}-\sqrt{b}\left(\sin(a)\right)^{2}=\sin(a)
Uża l-propjetà distributtiva biex timmultiplika \sqrt{b} b'1-\left(\sin(a)\right)^{2}.
\left(1-\left(\sin(a)\right)^{2}\right)\sqrt{b}=\sin(a)
Ikkombina t-termini kollha li fihom b.
\frac{\left(-\left(\sin(a)\right)^{2}+1\right)\sqrt{b}}{-\left(\sin(a)\right)^{2}+1}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
Iddividi ż-żewġ naħat b'1-\left(\sin(a)\right)^{2}.
\sqrt{b}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
Meta tiddividi b'1-\left(\sin(a)\right)^{2} titneħħa l-multiplikazzjoni b'1-\left(\sin(a)\right)^{2}.
\sqrt{b}=\frac{\tan(a)}{\cos(a)}
Iddividi \sin(a) b'1-\left(\sin(a)\right)^{2}.
b=\frac{\left(\tan(a)\right)^{2}}{\left(\cos(a)\right)^{2}}
Ikkwadra ż-żewġ naħat tal-ekwazzjoni.