Aqbeż għall-kontenut ewlieni
Solvi għal x, y, z
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

x=-y+3z-t+2c
Solvi x+y-3z+t=2c għal x.
3\left(-y+3z-t+2c\right)-y+z-t=2a -\left(-y+3z-t+2c\right)+3y-z+t=2b
Issostitwixxi -y+3z-t+2c għal x fit-tieni u t-tielet ekwazzjoni.
y=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c z=y-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t
Solvi dawn l-ekwazzjonijiet għal y u z rispettivament.
z=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t
Issostitwixxi -t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c għal y fl-ekwazzjoni l-oħra z=y-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t.
z=\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
Solvi z=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t għal z.
y=-t+\frac{5}{2}\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{1}{2}a+\frac{3}{2}c
Issostitwixxi \frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b għal z fl-ekwazzjoni l-oħra y=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c.
y=-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b
Ikkalkula y minn y=-t+\frac{5}{2}\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{1}{2}a+\frac{3}{2}c.
x=-\left(-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-t+2c
Issostitwixxi -\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b għal y u \frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b għal z fl-ekwazzjoni x=-y+3z-t+2c.
x=\frac{1}{6}t+\frac{1}{6}c+\frac{2}{3}a+\frac{1}{6}b
Ikkalkula x minn x=-\left(-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-t+2c.
x=\frac{1}{6}t+\frac{1}{6}c+\frac{2}{3}a+\frac{1}{6}b y=-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b z=\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
Is-sistema issa solvuta.