Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}-xy})
Uża l-propjetà distributtiva biex timmultiplika x b'x-y.
-\left(x^{2}+\left(-y\right)x^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+\left(-y\right)x^{1})
Jekk F hija l-kompożizzjoni ta' żewġ funzjonijiet differenzjabbli f\left(u\right) u u=g\left(x\right), jiġifieri, jekk F\left(x\right)=f\left(g\left(x\right)\right), mela d-derivattiv ta' F huwa d-derivattiv ta' f fir-rigward ta' u immultiplikat bid-derivattiv ta' g fir-rigward ta' x, jiġifieri, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}+\left(-y\right)x^{1}\right)^{-2}\left(2x^{2-1}+\left(-y\right)x^{1-1}\right)
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\left(x^{2}+\left(-y\right)x^{1}\right)^{-2}\left(-2x^{1}+yx^{0}\right)
Issimplifika.
\left(x^{2}+\left(-y\right)x\right)^{-2}\left(-2x+yx^{0}\right)
Għal kwalunkwe terminu t, t^{1}=t.
\left(x^{2}+\left(-y\right)x\right)^{-2}\left(-2x+y\times 1\right)
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\left(x^{2}+\left(-y\right)x\right)^{-2}\left(-2x+y\right)
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.