Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+1 u x-1 huwa \left(x-1\right)\left(x+1\right). Immultiplika \frac{5}{x+1} b'\frac{x-1}{x-1}. Immultiplika \frac{6}{x-1} b'\frac{x+1}{x+1}.
\frac{5\left(x-1\right)+6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Billi \frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} u \frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{5x-5+6x+6}{\left(x-1\right)\left(x+1\right)}
Agħmel il-multiplikazzjonijiet fi 5\left(x-1\right)+6\left(x+1\right).
\frac{11x+1}{\left(x-1\right)\left(x+1\right)}
Ikkombina termini simili f'5x-5+6x+6.
\frac{11x+1}{x^{2}-1}
Espandi \left(x-1\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' x+1 u x-1 huwa \left(x-1\right)\left(x+1\right). Immultiplika \frac{5}{x+1} b'\frac{x-1}{x-1}. Immultiplika \frac{6}{x-1} b'\frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\left(x-1\right)+6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
Billi \frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} u \frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-5+6x+6}{\left(x-1\right)\left(x+1\right)})
Agħmel il-multiplikazzjonijiet fi 5\left(x-1\right)+6\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{\left(x-1\right)\left(x+1\right)})
Ikkombina termini simili f'5x-5+6x+6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{x^{2}-1^{2}})
Ikkunsidra li \left(x-1\right)\left(x+1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{x^{2}-1})
Ikkalkula 1 bil-power ta' 2 u tikseb 1.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(11x^{1}+1)-\left(11x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}-1\right)\times 11x^{1-1}-\left(11x^{1}+1\right)\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}-1\right)\times 11x^{0}-\left(11x^{1}+1\right)\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Agħmel l-aritmetika.
\frac{x^{2}\times 11x^{0}-11x^{0}-\left(11x^{1}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{11x^{2}-11x^{0}-\left(11\times 2x^{1+1}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{11x^{2}-11x^{0}-\left(22x^{2}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Agħmel l-aritmetika.
\frac{11x^{2}-11x^{0}-22x^{2}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(11-22\right)x^{2}-11x^{0}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Ikkombina termini simili.
\frac{-11x^{2}-11x^{0}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Naqqas 22 minn 11.
\frac{-11x^{2}-11x^{0}-2x}{\left(x^{2}-1\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-11x^{2}-11-2x}{\left(x^{2}-1\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.