Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{3\sqrt{2}-\sqrt{12}}{\sqrt{50}-\sqrt{48}}
Iffattura 18=3^{2}\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{3^{2}\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{3^{2}}\sqrt{2}. Ħu l-għerq kwadrat ta' 3^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{50}-\sqrt{48}}
Iffattura 12=2^{2}\times 3. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 3} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{3}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-\sqrt{48}}
Iffattura 50=5^{2}\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{5^{2}\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{5^{2}}\sqrt{2}. Ħu l-għerq kwadrat ta' 5^{2}.
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}}
Iffattura 48=4^{2}\times 3. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{4^{2}\times 3} bħala l-prodott tal-għeruq kwadrati \sqrt{4^{2}}\sqrt{3}. Ħu l-għerq kwadrat ta' 4^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}
Irrazzjonalizza d-denominatur tal-\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}} billi timmultiplika in-numeratur u d-denominatur mill-5\sqrt{2}+4\sqrt{3}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Ikkunsidra li \left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{5^{2}\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Espandi \left(5\sqrt{2}\right)^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
Ikkalkula 5 bil-power ta' 2 u tikseb 25.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\times 2-\left(-4\sqrt{3}\right)^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\sqrt{3}\right)^{2}}
Immultiplika 25 u 2 biex tikseb 50.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
Espandi \left(-4\sqrt{3}\right)^{2}.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\left(\sqrt{3}\right)^{2}}
Ikkalkula -4 bil-power ta' 2 u tikseb 16.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\times 3}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-48}
Immultiplika 16 u 3 biex tikseb 48.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{2}
Naqqas 48 minn 50 biex tikseb 2.
\frac{15\left(\sqrt{2}\right)^{2}+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 3\sqrt{2}-2\sqrt{3} b'kull terminu ta' 5\sqrt{2}+4\sqrt{3}.
\frac{15\times 2+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{30+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Immultiplika 15 u 2 biex tikseb 30.
\frac{30+12\sqrt{6}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
Biex timmultiplika \sqrt{3} u \sqrt{2}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{30+12\sqrt{6}-10\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
Biex timmultiplika \sqrt{3} u \sqrt{2}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{30+2\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
Ikkombina 12\sqrt{6} u -10\sqrt{6} biex tikseb 2\sqrt{6}.
\frac{30+2\sqrt{6}-8\times 3}{2}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{30+2\sqrt{6}-24}{2}
Immultiplika -8 u 3 biex tikseb -24.
\frac{6+2\sqrt{6}}{2}
Naqqas 24 minn 30 biex tikseb 6.
3+\sqrt{6}
Iddividi kull terminu ta' 6+2\sqrt{6} b'2 biex tikseb3+\sqrt{6}.