Solvi għal x
x=1
Graff
Sehem
Ikkupjat fuq il-klibbord
-\left(x^{2}+5\right)=\left(x-5\right)\times 3+\left(x+5\right)x
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -5,5 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-5\right)\left(x+5\right), l-inqas denominatur komuni ta' 25-x^{2},x+5,x-5.
-x^{2}-5=\left(x-5\right)\times 3+\left(x+5\right)x
Biex issib l-oppost ta' x^{2}+5, sib l-oppost ta' kull terminu.
-x^{2}-5=3x-15+\left(x+5\right)x
Uża l-propjetà distributtiva biex timmultiplika x-5 b'3.
-x^{2}-5=3x-15+x^{2}+5x
Uża l-propjetà distributtiva biex timmultiplika x+5 b'x.
-x^{2}-5=8x-15+x^{2}
Ikkombina 3x u 5x biex tikseb 8x.
-x^{2}-5-8x=-15+x^{2}
Naqqas 8x miż-żewġ naħat.
-x^{2}-5-8x-\left(-15\right)=x^{2}
Naqqas -15 miż-żewġ naħat.
-x^{2}-5-8x+15=x^{2}
L-oppost ta' -15 huwa 15.
-x^{2}-5-8x+15-x^{2}=0
Naqqas x^{2} miż-żewġ naħat.
-x^{2}+10-8x-x^{2}=0
Żid -5 u 15 biex tikseb 10.
-2x^{2}+10-8x=0
Ikkombina -x^{2} u -x^{2} biex tikseb -2x^{2}.
-x^{2}+5-4x=0
Iddividi ż-żewġ naħat b'2.
-x^{2}-4x+5=0
Irranġa mill-ġdid il-polynomial biex tqiegħdu fil-forma standard. Qiegħed it-termini f'ordni mill-ogħla qawwa għall-aktar baxxa.
a+b=-4 ab=-5=-5
Biex issolvi l-ekwazzjoni, iffatura n-naħa tax-xellug bl-iggruppar. L-ewwel, in-naħa tax-xellug jeħtieġ tinkiteb mill-ġdid bħala -x^{2}+ax+bx+5. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
a=1 b=-5
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa negattiv, in-numru negattiv għandu l-valur assolut akbar mill-pożittiv. L-uniku par bħal dawn huwa s-soluzzjoni tas-sistema.
\left(-x^{2}+x\right)+\left(-5x+5\right)
Erġa' ikteb -x^{2}-4x+5 bħala \left(-x^{2}+x\right)+\left(-5x+5\right).
x\left(-x+1\right)+5\left(-x+1\right)
Fattur x fl-ewwel u 5 fit-tieni grupp.
\left(-x+1\right)\left(x+5\right)
Iffattura 'l barra t-terminu komuni -x+1 bl-użu ta' propjetà distributtiva.
x=1 x=-5
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi -x+1=0 u x+5=0.
x=1
Il-varjabbi x ma jistax ikun ugwali għal -5.
-\left(x^{2}+5\right)=\left(x-5\right)\times 3+\left(x+5\right)x
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -5,5 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-5\right)\left(x+5\right), l-inqas denominatur komuni ta' 25-x^{2},x+5,x-5.
-x^{2}-5=\left(x-5\right)\times 3+\left(x+5\right)x
Biex issib l-oppost ta' x^{2}+5, sib l-oppost ta' kull terminu.
-x^{2}-5=3x-15+\left(x+5\right)x
Uża l-propjetà distributtiva biex timmultiplika x-5 b'3.
-x^{2}-5=3x-15+x^{2}+5x
Uża l-propjetà distributtiva biex timmultiplika x+5 b'x.
-x^{2}-5=8x-15+x^{2}
Ikkombina 3x u 5x biex tikseb 8x.
-x^{2}-5-8x=-15+x^{2}
Naqqas 8x miż-żewġ naħat.
-x^{2}-5-8x-\left(-15\right)=x^{2}
Naqqas -15 miż-żewġ naħat.
-x^{2}-5-8x+15=x^{2}
L-oppost ta' -15 huwa 15.
-x^{2}-5-8x+15-x^{2}=0
Naqqas x^{2} miż-żewġ naħat.
-x^{2}+10-8x-x^{2}=0
Żid -5 u 15 biex tikseb 10.
-2x^{2}+10-8x=0
Ikkombina -x^{2} u -x^{2} biex tikseb -2x^{2}.
-2x^{2}-8x+10=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-2\right)\times 10}}{2\left(-2\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -2 għal a, -8 għal b, u 10 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-2\right)\times 10}}{2\left(-2\right)}
Ikkwadra -8.
x=\frac{-\left(-8\right)±\sqrt{64+8\times 10}}{2\left(-2\right)}
Immultiplika -4 b'-2.
x=\frac{-\left(-8\right)±\sqrt{64+80}}{2\left(-2\right)}
Immultiplika 8 b'10.
x=\frac{-\left(-8\right)±\sqrt{144}}{2\left(-2\right)}
Żid 64 ma' 80.
x=\frac{-\left(-8\right)±12}{2\left(-2\right)}
Ħu l-għerq kwadrat ta' 144.
x=\frac{8±12}{2\left(-2\right)}
L-oppost ta' -8 huwa 8.
x=\frac{8±12}{-4}
Immultiplika 2 b'-2.
x=\frac{20}{-4}
Issa solvi l-ekwazzjoni x=\frac{8±12}{-4} fejn ± hija plus. Żid 8 ma' 12.
x=-5
Iddividi 20 b'-4.
x=-\frac{4}{-4}
Issa solvi l-ekwazzjoni x=\frac{8±12}{-4} fejn ± hija minus. Naqqas 12 minn 8.
x=1
Iddividi -4 b'-4.
x=-5 x=1
L-ekwazzjoni issa solvuta.
x=1
Il-varjabbi x ma jistax ikun ugwali għal -5.
-\left(x^{2}+5\right)=\left(x-5\right)\times 3+\left(x+5\right)x
Il-varjabbli x ma jistax ikun ugwali għal kwalunkwe mill-valuri -5,5 billi d-diviżjoni b'żero mhix definita. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-5\right)\left(x+5\right), l-inqas denominatur komuni ta' 25-x^{2},x+5,x-5.
-x^{2}-5=\left(x-5\right)\times 3+\left(x+5\right)x
Biex issib l-oppost ta' x^{2}+5, sib l-oppost ta' kull terminu.
-x^{2}-5=3x-15+\left(x+5\right)x
Uża l-propjetà distributtiva biex timmultiplika x-5 b'3.
-x^{2}-5=3x-15+x^{2}+5x
Uża l-propjetà distributtiva biex timmultiplika x+5 b'x.
-x^{2}-5=8x-15+x^{2}
Ikkombina 3x u 5x biex tikseb 8x.
-x^{2}-5-8x=-15+x^{2}
Naqqas 8x miż-żewġ naħat.
-x^{2}-5-8x-x^{2}=-15
Naqqas x^{2} miż-żewġ naħat.
-2x^{2}-5-8x=-15
Ikkombina -x^{2} u -x^{2} biex tikseb -2x^{2}.
-2x^{2}-8x=-15+5
Żid 5 maż-żewġ naħat.
-2x^{2}-8x=-10
Żid -15 u 5 biex tikseb -10.
\frac{-2x^{2}-8x}{-2}=-\frac{10}{-2}
Iddividi ż-żewġ naħat b'-2.
x^{2}+\left(-\frac{8}{-2}\right)x=-\frac{10}{-2}
Meta tiddividi b'-2 titneħħa l-multiplikazzjoni b'-2.
x^{2}+4x=-\frac{10}{-2}
Iddividi -8 b'-2.
x^{2}+4x=5
Iddividi -10 b'-2.
x^{2}+4x+2^{2}=5+2^{2}
Iddividi 4, il-koeffiċjent tat-terminu x, b'2 biex tikseb 2. Imbagħad żid il-kwadru ta' 2 maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+4x+4=5+4
Ikkwadra 2.
x^{2}+4x+4=9
Żid 5 ma' 4.
\left(x+2\right)^{2}=9
Fattur x^{2}+4x+4. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{9}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+2=3 x+2=-3
Issimplifika.
x=1 x=-5
Naqqas 2 miż-żewġ naħat tal-ekwazzjoni.
x=1
Il-varjabbi x ma jistax ikun ugwali għal -5.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}