Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. v
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' v+1 u v-1 huwa \left(v-1\right)\left(v+1\right). Immultiplika \frac{v}{v+1} b'\frac{v-1}{v-1}. Immultiplika \frac{3}{v-1} b'\frac{v+1}{v+1}.
\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Billi \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} u \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Agħmel il-multiplikazzjonijiet fi v\left(v-1\right)+3\left(v+1\right).
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Ikkombina termini simili f'v^{2}-v+3v+3.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)}
Iffattura v^{2}-1.
\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)}
Billi \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} u \frac{6}{\left(v-1\right)\left(v+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}
Ikkombina termini simili f'v^{2}+2v+3-6.
\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}.
\frac{v+3}{v+1}
Annulla v-1 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' v+1 u v-1 huwa \left(v-1\right)\left(v+1\right). Immultiplika \frac{v}{v+1} b'\frac{v-1}{v-1}. Immultiplika \frac{3}{v-1} b'\frac{v+1}{v+1}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Billi \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} u \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Agħmel il-multiplikazzjonijiet fi v\left(v-1\right)+3\left(v+1\right).
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Ikkombina termini simili f'v^{2}-v+3v+3.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)})
Iffattura v^{2}-1.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)})
Billi \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} u \frac{6}{\left(v-1\right)\left(v+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)})
Ikkombina termini simili f'v^{2}+2v+3-6.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v+3}{v+1})
Annulla v-1 fin-numeratur u d-denominatur.
\frac{\left(v^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+3)-\left(v^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+1)}{\left(v^{1}+1\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(v^{1}+1\right)v^{1-1}-\left(v^{1}+3\right)v^{1-1}}{\left(v^{1}+1\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(v^{1}+1\right)v^{0}-\left(v^{1}+3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Agħmel l-aritmetika.
\frac{v^{1}v^{0}+v^{0}-\left(v^{1}v^{0}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{v^{1}+v^{0}-\left(v^{1}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{v^{1}+v^{0}-v^{1}-3v^{0}}{\left(v^{1}+1\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(1-1\right)v^{1}+\left(1-3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Ikkombina termini simili.
\frac{-2v^{0}}{\left(v^{1}+1\right)^{2}}
Naqqas 1 minn 1 u 3 minn 1.
\frac{-2v^{0}}{\left(v+1\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-2}{\left(v+1\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.