Solvi għal n (complex solution)
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
x\neq \frac{1+\sqrt{23}i}{6}\text{ and }x\neq \frac{-\sqrt{23}i+1}{6}\text{ and }x\neq -1\text{ and }x\neq 1
Solvi għal n
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
|x|\neq 1
Solvi għal x (complex solution)
\left\{\begin{matrix}x=\frac{-\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{1}{3}\\x=\frac{\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq -\frac{2}{3}\text{ and }n\neq \frac{1}{3}\text{ and }n\neq \frac{3}{2}\\x=\frac{1}{8}\text{, }&n=\frac{1}{3}\end{matrix}\right.
Solvi għal x
\left\{\begin{matrix}x=\frac{-\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{1}{3}\text{ and }n\geq \frac{9-4\sqrt{41}}{23}\text{ and }n\leq \frac{4\sqrt{41}+9}{23}\\x=\frac{\sqrt{25+18n-23n^{2}}+n+5}{2\left(3n-1\right)}\text{, }&n\neq \frac{3}{2}\text{ and }n\neq \frac{1}{3}\text{ and }n\geq \frac{9-4\sqrt{41}}{23}\text{ and }n\leq \frac{4\sqrt{41}+9}{23}\text{ and }n\neq -\frac{2}{3}\\x=\frac{1}{8}\text{, }&n=\frac{1}{3}\end{matrix}\right.
Graff
Sehem
Ikkupjat fuq il-klibbord
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 2n b'x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 2nx-2n b'x+1 u kkombina termini simili.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Ikkunsidra li \left(x-1\right)\left(x+1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ikkwadra 1.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Naqqas 2nx^{2} miż-żewġ naħat.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Ikkombina 5nx^{2} u -2nx^{2} biex tikseb 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Żid 2n maż-żewġ naħat.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Żid 5x maż-żewġ naħat.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Żid 1 maż-żewġ naħat.
3nx^{2}-nx+2n=x^{2}+5x
Żid -1 u 1 biex tikseb 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Ikkombina t-termini kollha li fihom n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Iddividi ż-żewġ naħat b'3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Meta tiddividi b'3x^{2}-x+2 titneħħa l-multiplikazzjoni b'3x^{2}-x+2.
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 2n b'x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 2nx-2n b'x+1 u kkombina termini simili.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Ikkunsidra li \left(x-1\right)\left(x+1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ikkwadra 1.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Naqqas 2nx^{2} miż-żewġ naħat.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Ikkombina 5nx^{2} u -2nx^{2} biex tikseb 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Żid 2n maż-żewġ naħat.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Żid 5x maż-żewġ naħat.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Żid 1 maż-żewġ naħat.
3nx^{2}-nx+2n=x^{2}+5x
Żid -1 u 1 biex tikseb 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Ikkombina t-termini kollha li fihom n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Iddividi ż-żewġ naħat b'3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Meta tiddividi b'3x^{2}-x+2 titneħħa l-multiplikazzjoni b'3x^{2}-x+2.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}