Aqbeż għall-kontenut ewlieni
Solvi għal n (complex solution)
Tick mark Image
Solvi għal n
Tick mark Image
Solvi għal x (complex solution)
Tick mark Image
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 2n b'x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 2nx-2n b'x+1 u kkombina termini simili.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Ikkunsidra li \left(x-1\right)\left(x+1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ikkwadra 1.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Naqqas 2nx^{2} miż-żewġ naħat.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Ikkombina 5nx^{2} u -2nx^{2} biex tikseb 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Żid 2n maż-żewġ naħat.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Żid 5x maż-żewġ naħat.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Żid 1 maż-żewġ naħat.
3nx^{2}-nx+2n=x^{2}+5x
Żid -1 u 1 biex tikseb 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Ikkombina t-termini kollha li fihom n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Iddividi ż-żewġ naħat b'3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Meta tiddividi b'3x^{2}-x+2 titneħħa l-multiplikazzjoni b'3x^{2}-x+2.
5nx^{2}-5x-nx-1=2n\left(x-1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(x-1\right)\left(x+1\right).
5nx^{2}-5x-nx-1=\left(2nx-2n\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 2n b'x-1.
5nx^{2}-5x-nx-1=2nx^{2}-2n+\left(x-1\right)\left(x+1\right)
Uża l-propjetà distributtiva biex timmultiplika 2nx-2n b'x+1 u kkombina termini simili.
5nx^{2}-5x-nx-1=2nx^{2}-2n+x^{2}-1
Ikkunsidra li \left(x-1\right)\left(x+1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ikkwadra 1.
5nx^{2}-5x-nx-1-2nx^{2}=-2n+x^{2}-1
Naqqas 2nx^{2} miż-żewġ naħat.
3nx^{2}-5x-nx-1=-2n+x^{2}-1
Ikkombina 5nx^{2} u -2nx^{2} biex tikseb 3nx^{2}.
3nx^{2}-5x-nx-1+2n=x^{2}-1
Żid 2n maż-żewġ naħat.
3nx^{2}-nx-1+2n=x^{2}-1+5x
Żid 5x maż-żewġ naħat.
3nx^{2}-nx+2n=x^{2}-1+5x+1
Żid 1 maż-żewġ naħat.
3nx^{2}-nx+2n=x^{2}+5x
Żid -1 u 1 biex tikseb 0.
\left(3x^{2}-x+2\right)n=x^{2}+5x
Ikkombina t-termini kollha li fihom n.
\frac{\left(3x^{2}-x+2\right)n}{3x^{2}-x+2}=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Iddividi ż-żewġ naħat b'3x^{2}-x+2.
n=\frac{x\left(x+5\right)}{3x^{2}-x+2}
Meta tiddividi b'3x^{2}-x+2 titneħħa l-multiplikazzjoni b'3x^{2}-x+2.