Solvi għal y
y=-\frac{\sqrt{3}\left(x+6\sqrt{3}-11\right)}{3}
Solvi għal x
x=-\sqrt{3}y+11-6\sqrt{3}
Graff
Kwizz
Algebra
5 problemi simili għal:
\frac { 5 + 2 \sqrt { 3 } } { 7 + 4 \sqrt { 3 } } = x + \sqrt { 3 } y
Sehem
Ikkupjat fuq il-klibbord
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=x+\sqrt{3}y
Irrazzjonalizza d-denominatur tal-\frac{5+2\sqrt{3}}{7+4\sqrt{3}} billi timmultiplika in-numeratur u d-denominatur mill-7-4\sqrt{3}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}=x+\sqrt{3}y
Ikkunsidra li \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}=x+\sqrt{3}y
Ikkalkula 7 bil-power ta' 2 u tikseb 49.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}=x+\sqrt{3}y
Espandi \left(4\sqrt{3}\right)^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}=x+\sqrt{3}y
Ikkalkula 4 bil-power ta' 2 u tikseb 16.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}=x+\sqrt{3}y
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}=x+\sqrt{3}y
Immultiplika 16 u 3 biex tikseb 48.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}=x+\sqrt{3}y
Naqqas 48 minn 49 biex tikseb 1.
\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)=x+\sqrt{3}y
Kwalunkwe ħaġa diviża b'wieħed tagħti riżultat tagħha stess.
35-6\sqrt{3}-8\left(\sqrt{3}\right)^{2}=x+\sqrt{3}y
Uża l-propjetà distributtiva biex timmultiplika 5+2\sqrt{3} b'7-4\sqrt{3} u kkombina termini simili.
35-6\sqrt{3}-8\times 3=x+\sqrt{3}y
Il-kwadrat ta' \sqrt{3} huwa 3.
35-6\sqrt{3}-24=x+\sqrt{3}y
Immultiplika -8 u 3 biex tikseb -24.
11-6\sqrt{3}=x+\sqrt{3}y
Naqqas 24 minn 35 biex tikseb 11.
x+\sqrt{3}y=11-6\sqrt{3}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\sqrt{3}y=11-6\sqrt{3}-x
Naqqas x miż-żewġ naħat.
\sqrt{3}y=-x+11-6\sqrt{3}
L-ekwazzjoni hija f'forma standard.
\frac{\sqrt{3}y}{\sqrt{3}}=\frac{-x+11-6\sqrt{3}}{\sqrt{3}}
Iddividi ż-żewġ naħat b'\sqrt{3}.
y=\frac{-x+11-6\sqrt{3}}{\sqrt{3}}
Meta tiddividi b'\sqrt{3} titneħħa l-multiplikazzjoni b'\sqrt{3}.
y=\frac{\sqrt{3}\left(-x+11-6\sqrt{3}\right)}{3}
Iddividi -6\sqrt{3}-x+11 b'\sqrt{3}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}