Evalwa
\frac{2\left(x-12\right)}{1-x^{2}}
Iddifferenzja w.r.t. x
-\frac{2\left(-x^{2}+24x-1\right)}{\left(x^{2}-1\right)^{2}}
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{3\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}+\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 1-x u 1+x huwa \left(x+1\right)\left(-x+1\right). Immultiplika \frac{3}{1-x} b'\frac{x+1}{x+1}. Immultiplika \frac{1}{1+x} b'\frac{-x+1}{-x+1}.
\frac{3\left(x+1\right)-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}}
Billi \frac{3\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)} u \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{3x+3-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}}
Agħmel il-multiplikazzjonijiet fi 3\left(x+1\right)-x+1.
\frac{2x+4}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}}
Ikkombina termini simili f'3x+3-x+1.
\frac{2x+4}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{\left(x-1\right)\left(-x-1\right)}
Iffattura 1-x^{2}.
\frac{-\left(2x+4\right)}{\left(x-1\right)\left(x+1\right)}-\frac{28\left(-1\right)}{\left(x-1\right)\left(x+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+1\right)\left(-x+1\right) u \left(x-1\right)\left(-x-1\right) huwa \left(x-1\right)\left(x+1\right). Immultiplika \frac{2x+4}{\left(x+1\right)\left(-x+1\right)} b'\frac{-1}{-1}. Immultiplika \frac{28}{\left(x-1\right)\left(-x-1\right)} b'\frac{-1}{-1}.
\frac{-\left(2x+4\right)-28\left(-1\right)}{\left(x-1\right)\left(x+1\right)}
Billi \frac{-\left(2x+4\right)}{\left(x-1\right)\left(x+1\right)} u \frac{28\left(-1\right)}{\left(x-1\right)\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{-2x-4+28}{\left(x-1\right)\left(x+1\right)}
Agħmel il-multiplikazzjonijiet fi -\left(2x+4\right)-28\left(-1\right).
\frac{-2x+24}{\left(x-1\right)\left(x+1\right)}
Ikkombina termini simili f'-2x-4+28.
\frac{-2x+24}{x^{2}-1}
Espandi \left(x-1\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}+\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 1-x u 1+x huwa \left(x+1\right)\left(-x+1\right). Immultiplika \frac{3}{1-x} b'\frac{x+1}{x+1}. Immultiplika \frac{1}{1+x} b'\frac{-x+1}{-x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+1\right)-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}})
Billi \frac{3\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)} u \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+3-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}})
Agħmel il-multiplikazzjonijiet fi 3\left(x+1\right)-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+4}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{1-x^{2}})
Ikkombina termini simili f'3x+3-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+4}{\left(x+1\right)\left(-x+1\right)}-\frac{28}{\left(x-1\right)\left(-x-1\right)})
Iffattura 1-x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\left(2x+4\right)}{\left(x-1\right)\left(x+1\right)}-\frac{28\left(-1\right)}{\left(x-1\right)\left(x+1\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' \left(x+1\right)\left(-x+1\right) u \left(x-1\right)\left(-x-1\right) huwa \left(x-1\right)\left(x+1\right). Immultiplika \frac{2x+4}{\left(x+1\right)\left(-x+1\right)} b'\frac{-1}{-1}. Immultiplika \frac{28}{\left(x-1\right)\left(-x-1\right)} b'\frac{-1}{-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\left(2x+4\right)-28\left(-1\right)}{\left(x-1\right)\left(x+1\right)})
Billi \frac{-\left(2x+4\right)}{\left(x-1\right)\left(x+1\right)} u \frac{28\left(-1\right)}{\left(x-1\right)\left(x+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x-4+28}{\left(x-1\right)\left(x+1\right)})
Agħmel il-multiplikazzjonijiet fi -\left(2x+4\right)-28\left(-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+24}{\left(x-1\right)\left(x+1\right)})
Ikkombina termini simili f'-2x-4+28.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+24}{x^{2}-1})
Ikkunsidra li \left(x-1\right)\left(x+1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ikkwadra 1.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+24)-\left(-2x^{1}+24\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{2}-1\right)\left(-2\right)x^{1-1}-\left(-2x^{1}+24\right)\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{2}-1\right)\left(-2\right)x^{0}-\left(-2x^{1}+24\right)\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Agħmel l-aritmetika.
\frac{x^{2}\left(-2\right)x^{0}-\left(-2x^{0}\right)-\left(-2x^{1}\times 2x^{1}+24\times 2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{-2x^{2}-\left(-2x^{0}\right)-\left(-2\times 2x^{1+1}+24\times 2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{-2x^{2}+2x^{0}-\left(-4x^{2}+48x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Agħmel l-aritmetika.
\frac{-2x^{2}+2x^{0}-\left(-4x^{2}\right)-48x^{1}}{\left(x^{2}-1\right)^{2}}
Neħħi l-parenteżi mhux meħtieġa.
\frac{\left(-2-\left(-4\right)\right)x^{2}+2x^{0}-48x^{1}}{\left(x^{2}-1\right)^{2}}
Ikkombina termini simili.
\frac{2x^{2}+2x^{0}-48x^{1}}{\left(x^{2}-1\right)^{2}}
Naqqas -4 minn -2.
\frac{2x^{2}+2x^{0}-48x}{\left(x^{2}-1\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{2x^{2}+2\times 1-48x}{\left(x^{2}-1\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{2x^{2}+2-48x}{\left(x^{2}-1\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}