Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Fattur
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Irrazzjonalizza d-denominatur tal-\frac{3+2\sqrt{2}}{2+\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-2-\sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Ikkunsidra li \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{4-2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Ikkwadra 2. Ikkwadra \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Naqqas 2 minn 4 biex tikseb 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{2}-1}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{2\times 2}
Immultiplika \frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2} b'\frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Immultiplika 2 u 2 biex tikseb 4.
\frac{\left(6-3\sqrt{2}+4\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 3+2\sqrt{2} b'kull terminu ta' 2-\sqrt{2}.
\frac{\left(6+\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Ikkombina -3\sqrt{2} u 4\sqrt{2} biex tikseb \sqrt{2}.
\frac{\left(6+\sqrt{2}-2\times 2\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(6+\sqrt{2}-4\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Immultiplika -2 u 2 biex tikseb -4.
\frac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Naqqas 4 minn 6 biex tikseb 2.
\frac{\left(2\sqrt{2}-2+\left(\sqrt{2}\right)^{2}-\sqrt{2}\right)\sqrt{2}}{4}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2+\sqrt{2} b'kull terminu ta' \sqrt{2}-1.
\frac{\left(2\sqrt{2}-2+2-\sqrt{2}\right)\sqrt{2}}{4}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(2\sqrt{2}-\sqrt{2}\right)\sqrt{2}}{4}
Żid -2 u 2 biex tikseb 0.
\frac{\sqrt{2}\sqrt{2}}{4}
Ikkombina 2\sqrt{2} u -\sqrt{2} biex tikseb \sqrt{2}.
\frac{2}{4}
Immultiplika \sqrt{2} u \sqrt{2} biex tikseb 2.
\frac{1}{2}
Naqqas il-frazzjoni \frac{2}{4} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.