Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{2x\left(x+2\right)}{x^{2}-4}
Iddividi \frac{2x}{x^{2}-4} b'\frac{1}{x+2} billi timmultiplika \frac{2x}{x^{2}-4} bir-reċiproku ta' \frac{1}{x+2}.
\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati.
\frac{2x}{x-2}
Annulla x+2 fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x+2\right)}{x^{2}-4})
Iddividi \frac{2x}{x^{2}-4} b'\frac{1}{x+2} billi timmultiplika \frac{2x}{x^{2}-4} bir-reċiproku ta' \frac{1}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)})
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{2x\left(x+2\right)}{x^{2}-4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x-2})
Annulla x+2 fin-numeratur u d-denominatur.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{1}-2\right)\times 2x^{1-1}-2x^{1}x^{1-1}}{\left(x^{1}-2\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{1}-2\right)\times 2x^{0}-2x^{1}x^{0}}{\left(x^{1}-2\right)^{2}}
Agħmel l-aritmetika.
\frac{x^{1}\times 2x^{0}-2\times 2x^{0}-2x^{1}x^{0}}{\left(x^{1}-2\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{2x^{1}-2\times 2x^{0}-2x^{1}}{\left(x^{1}-2\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{2x^{1}-4x^{0}-2x^{1}}{\left(x^{1}-2\right)^{2}}
Agħmel l-aritmetika.
\frac{\left(2-2\right)x^{1}-4x^{0}}{\left(x^{1}-2\right)^{2}}
Ikkombina termini simili.
\frac{-4x^{0}}{\left(x^{1}-2\right)^{2}}
Naqqas 2 minn 2.
\frac{-4x^{0}}{\left(x-2\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{-4}{\left(x-2\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.