Evalwa
\frac{2x}{2-x}
Iddifferenzja w.r.t. x
\frac{4}{\left(x-2\right)^{2}}
Graff
Kwizz
Polynomial
5 problemi simili għal:
\frac { 2 x } { 1 + \frac { 1 } { 1 + \frac { x } { 1 - x } } } =
Sehem
Ikkupjat fuq il-klibbord
\frac{2x}{1+\frac{1}{\frac{1-x}{1-x}+\frac{x}{1-x}}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{1-x}{1-x}.
\frac{2x}{1+\frac{1}{\frac{1-x+x}{1-x}}}
Billi \frac{1-x}{1-x} u \frac{x}{1-x} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{2x}{1+\frac{1}{\frac{1}{1-x}}}
Ikkombina termini simili f'1-x+x.
\frac{2x}{1+1-x}
Iddividi 1 b'\frac{1}{1-x} billi timmultiplika 1 bir-reċiproku ta' \frac{1}{1-x}.
\frac{2x}{2-x}
Żid 1 u 1 biex tikseb 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{1+\frac{1}{\frac{1-x}{1-x}+\frac{x}{1-x}}})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{1-x}{1-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{1+\frac{1}{\frac{1-x+x}{1-x}}})
Billi \frac{1-x}{1-x} u \frac{x}{1-x} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{1+\frac{1}{\frac{1}{1-x}}})
Ikkombina termini simili f'1-x+x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{1+1-x})
Iddividi 1 b'\frac{1}{1-x} billi timmultiplika 1 bir-reċiproku ta' \frac{1}{1-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{2-x})
Żid 1 u 1 biex tikseb 2.
\frac{\left(-x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+2)}{\left(-x^{1}+2\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(-x^{1}+2\right)\times 2x^{1-1}-2x^{1}\left(-1\right)x^{1-1}}{\left(-x^{1}+2\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(-x^{1}+2\right)\times 2x^{0}-2x^{1}\left(-1\right)x^{0}}{\left(-x^{1}+2\right)^{2}}
Agħmel l-aritmetika.
\frac{-x^{1}\times 2x^{0}+2\times 2x^{0}-2x^{1}\left(-1\right)x^{0}}{\left(-x^{1}+2\right)^{2}}
Espandi bl-użu ta' propjetà distributtiva.
\frac{-2x^{1}+2\times 2x^{0}-2\left(-1\right)x^{1}}{\left(-x^{1}+2\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{-2x^{1}+4x^{0}-\left(-2x^{1}\right)}{\left(-x^{1}+2\right)^{2}}
Agħmel l-aritmetika.
\frac{\left(-2-\left(-2\right)\right)x^{1}+4x^{0}}{\left(-x^{1}+2\right)^{2}}
Ikkombina termini simili.
\frac{4x^{0}}{\left(-x^{1}+2\right)^{2}}
Naqqas -2 minn -2.
\frac{4x^{0}}{\left(-x+2\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{4\times 1}{\left(-x+2\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{4}{\left(-x+2\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}