Aqbeż għall-kontenut ewlieni
Solvi għal r
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{12}{5}r+\frac{12}{5}\left(-2\right)=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
Uża l-propjetà distributtiva biex timmultiplika \frac{12}{5} b'r-2.
\frac{12}{5}r+\frac{12\left(-2\right)}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
Esprimi \frac{12}{5}\left(-2\right) bħala frazzjoni waħda.
\frac{12}{5}r+\frac{-24}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
Immultiplika 12 u -2 biex tikseb -24.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
Frazzjoni \frac{-24}{5} tista' tinkiteb mill-ġdid bħala -\frac{24}{5} bl-estrazzjoni tas-sinjal negattiv.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(3r-4r+2\right)
Uża l-propjetà distributtiva biex timmultiplika -2 b'2r-1.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(-r+2\right)
Ikkombina 3r u -4r biex tikseb -r.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(-1\right)r+\frac{2}{3}\times 2
Uża l-propjetà distributtiva biex timmultiplika \frac{2}{3} b'-r+2.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{2}{3}\times 2
Immultiplika \frac{2}{3} u -1 biex tikseb -\frac{2}{3}.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{2\times 2}{3}
Esprimi \frac{2}{3}\times 2 bħala frazzjoni waħda.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{4}{3}
Immultiplika 2 u 2 biex tikseb 4.
\frac{12}{5}r-\frac{24}{5}+\frac{2}{3}r=\frac{4}{3}
Żid \frac{2}{3}r maż-żewġ naħat.
\frac{46}{15}r-\frac{24}{5}=\frac{4}{3}
Ikkombina \frac{12}{5}r u \frac{2}{3}r biex tikseb \frac{46}{15}r.
\frac{46}{15}r=\frac{4}{3}+\frac{24}{5}
Żid \frac{24}{5} maż-żewġ naħat.
\frac{46}{15}r=\frac{20}{15}+\frac{72}{15}
L-inqas multipli komuni ta' 3 u 5 huwa 15. Ikkonverti \frac{4}{3} u \frac{24}{5} fi frazzjonijiet bid-denominatur 15.
\frac{46}{15}r=\frac{20+72}{15}
Billi \frac{20}{15} u \frac{72}{15} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{46}{15}r=\frac{92}{15}
Żid 20 u 72 biex tikseb 92.
r=\frac{92}{15}\times \frac{15}{46}
Immultiplika ż-żewġ naħat b'\frac{15}{46}, ir-reċiproku ta' \frac{46}{15}.
r=\frac{92\times 15}{15\times 46}
Immultiplika \frac{92}{15} b'\frac{15}{46} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
r=\frac{92}{46}
Annulla 15 fin-numeratur u d-denominatur.
r=2
Iddividi 92 b'46 biex tikseb2.