Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. n
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' n u n+1 huwa n\left(n+1\right). Immultiplika \frac{1}{n} b'\frac{n+1}{n+1}. Immultiplika \frac{1}{n+1} b'\frac{n}{n}.
\frac{n+1-n}{n\left(n+1\right)}
Billi \frac{n+1}{n\left(n+1\right)} u \frac{n}{n\left(n+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{1}{n\left(n+1\right)}
Ikkombina termini simili f'n+1-n.
\frac{1}{n^{2}+n}
Espandi n\left(n+1\right).
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' n u n+1 huwa n\left(n+1\right). Immultiplika \frac{1}{n} b'\frac{n+1}{n+1}. Immultiplika \frac{1}{n+1} b'\frac{n}{n}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1-n}{n\left(n+1\right)})
Billi \frac{n+1}{n\left(n+1\right)} u \frac{n}{n\left(n+1\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n\left(n+1\right)})
Ikkombina termini simili f'n+1-n.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n^{2}+n})
Uża l-propjetà distributtiva biex timmultiplika n b'n+1.
-\left(n^{2}+n^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}+n^{1})
Jekk F hija l-kompożizzjoni ta' żewġ funzjonijiet differenzjabbli f\left(u\right) u u=g\left(x\right), jiġifieri, jekk F\left(x\right)=f\left(g\left(x\right)\right), mela d-derivattiv ta' F huwa d-derivattiv ta' f fir-rigward ta' u immultiplikat bid-derivattiv ta' g fir-rigward ta' x, jiġifieri, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(n^{2}+n^{1}\right)^{-2}\left(2n^{2-1}+n^{1-1}\right)
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\left(n^{2}+n^{1}\right)^{-2}\left(-2n^{1}-n^{0}\right)
Issimplifika.
\left(n^{2}+n\right)^{-2}\left(-2n-n^{0}\right)
Għal kwalunkwe terminu t, t^{1}=t.
\left(n^{2}+n\right)^{-2}\left(-2n-1\right)
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.