Ivverifika
vera
Sehem
Ikkupjat fuq il-klibbord
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{\sqrt{2}\sqrt{2}}=\frac{\sqrt{2}}{2}
Immultiplika \sqrt{2} u \sqrt{2} biex tikseb 2.
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Immultiplika \sqrt{2} u \sqrt{2} biex tikseb 2.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Irrazzjonalizza d-denominatur tal-\frac{1}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Naqqas \frac{\sqrt{2}}{2} miż-żewġ naħat.
0=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Ikkombina \frac{\sqrt{2}}{2} u -\frac{\sqrt{2}}{2} biex tikseb 0.
\text{true}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Qabbel 0 u 0.
\text{true}\text{ and }\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0
Naqqas \frac{\sqrt{2}}{2} miż-żewġ naħat.
\text{true}\text{ and }0=0
Ikkombina \frac{\sqrt{2}}{2} u -\frac{\sqrt{2}}{2} biex tikseb 0.
\text{true}\text{ and }\text{true}
Qabbel 0 u 0.
\text{true}
Il-conjunction ta' \text{true} u \text{true} hija \text{true}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}