Evalwa
\frac{47\sqrt{5}-56\sqrt{2}}{37}\approx 0.699979336
Sehem
Ikkupjat fuq il-klibbord
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}
Irrazzjonalizza d-denominatur tal-\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)}{3\sqrt{5}+2\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-3\sqrt{5}-2\sqrt{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Ikkunsidra li \left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Espandi \left(3\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Ikkalkula 3 bil-power ta' 2 u tikseb 9.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\times 5-\left(2\sqrt{2}\right)^{2}}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-\left(2\sqrt{2}\right)^{2}}
Immultiplika 9 u 5 biex tikseb 45.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-2^{2}\left(\sqrt{2}\right)^{2}}
Espandi \left(2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\left(\sqrt{2}\right)^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\times 2}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-8}
Immultiplika 4 u 2 biex tikseb 8.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Naqqas 8 minn 45 biex tikseb 37.
\frac{\left(3\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' \sqrt{5}-\sqrt{2} b'kull terminu ta' 3\sqrt{5}+\sqrt{2}.
\frac{\left(3\times 5+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{\left(15+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Immultiplika 3 u 5 biex tikseb 15.
\frac{\left(15+\sqrt{10}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Biex timmultiplika \sqrt{5} u \sqrt{2}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\left(15+\sqrt{10}-3\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Biex timmultiplika \sqrt{2} u \sqrt{5}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\left(15-2\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Ikkombina \sqrt{10} u -3\sqrt{10} biex tikseb -2\sqrt{10}.
\frac{\left(15-2\sqrt{10}-2\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(13-2\sqrt{10}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Naqqas 2 minn 15 biex tikseb 13.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{10}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 13-2\sqrt{10} b'kull terminu ta' 3\sqrt{5}-2\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{5}\sqrt{2}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Iffattura 10=5\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{5\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{5}\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\times 5\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Immultiplika \sqrt{5} u \sqrt{5} biex tikseb 5.
\frac{39\sqrt{5}-26\sqrt{2}-30\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Immultiplika -6 u 5 biex tikseb -30.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Ikkombina -26\sqrt{2} u -30\sqrt{2} biex tikseb -56\sqrt{2}.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{5}}{37}
Iffattura 10=2\times 5. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2\times 5} bħala l-prodott tal-għeruq kwadrati \sqrt{2}\sqrt{5}.
\frac{39\sqrt{5}-56\sqrt{2}+4\times 2\sqrt{5}}{37}
Immultiplika \sqrt{2} u \sqrt{2} biex tikseb 2.
\frac{39\sqrt{5}-56\sqrt{2}+8\sqrt{5}}{37}
Immultiplika 4 u 2 biex tikseb 8.
\frac{47\sqrt{5}-56\sqrt{2}}{37}
Ikkombina 39\sqrt{5} u 8\sqrt{5} biex tikseb 47\sqrt{5}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}