Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}}}{\sqrt{8}-\sqrt{5}}
Iffattura 8=2^{2}\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{2}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right)}}{\sqrt{8}-\sqrt{5}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}} billi timmultiplika in-numeratur u d-denominatur mill-2\sqrt{2}-\sqrt{5}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Ikkunsidra li \left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Espandi \left(2\sqrt{2}\right)^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\times 2-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Immultiplika 4 u 2 biex tikseb 8.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-5}}{\sqrt{8}-\sqrt{5}}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{\sqrt{8}-\sqrt{5}}
Naqqas 5 minn 8 biex tikseb 3.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}}
Iffattura 8=2^{2}\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{2}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3\left(2\sqrt{2}-\sqrt{5}\right)}
Esprimi \frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}} bħala frazzjoni waħda.
\frac{\sqrt{5}}{3}
Annulla -\sqrt{5}+2\sqrt{2} fin-numeratur u d-denominatur.