Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{\sqrt{3}}{\sqrt{2}}}{\sqrt{\frac{1}{8}}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{3}{2}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{\sqrt{\frac{1}{8}}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{3}}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{\frac{\sqrt{3}\sqrt{2}}{2}}{\sqrt{\frac{1}{8}}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\frac{\sqrt{6}}{2}}{\sqrt{\frac{1}{8}}}
Biex timmultiplika \sqrt{3} u \sqrt{2}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{1}}{\sqrt{8}}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{1}{8}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{1}}{\sqrt{8}}.
\frac{\frac{\sqrt{6}}{2}}{\frac{1}{\sqrt{8}}}
Ikkalkula l-għerq kwadrat ta' 1 u ikseb 1.
\frac{\frac{\sqrt{6}}{2}}{\frac{1}{2\sqrt{2}}}
Iffattura 8=2^{2}\times 2. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 2} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{2}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}
Irrazzjonalizza d-denominatur tal-\frac{1}{2\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{2}}{2\times 2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{2}}{4}}
Immultiplika 2 u 2 biex tikseb 4.
\frac{\sqrt{6}\times 4}{2\sqrt{2}}
Iddividi \frac{\sqrt{6}}{2} b'\frac{\sqrt{2}}{4} billi timmultiplika \frac{\sqrt{6}}{2} bir-reċiproku ta' \frac{\sqrt{2}}{4}.
\frac{2\sqrt{6}}{\sqrt{2}}
Annulla 2 fin-numeratur u d-denominatur.
\frac{2\sqrt{6}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{2\sqrt{6}}{\sqrt{2}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}.
\frac{2\sqrt{6}\sqrt{2}}{2}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{2\sqrt{2}\sqrt{3}\sqrt{2}}{2}
Iffattura 6=2\times 3. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2\times 3} bħala l-prodott tal-għeruq kwadrati \sqrt{2}\sqrt{3}.
\frac{2\times 2\sqrt{3}}{2}
Immultiplika \sqrt{2} u \sqrt{2} biex tikseb 2.
2\sqrt{3}
Annulla 2 u 2.