Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image
Graff

Sehem

\frac{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}-\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' y+7 u y-7 huwa \left(y-7\right)\left(y+7\right). Immultiplika \frac{y}{y+7} b'\frac{y-7}{y-7}. Immultiplika \frac{y}{y-7} b'\frac{y+7}{y+7}.
\frac{\frac{y\left(y-7\right)-y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Billi \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} u \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{y^{2}-7y-y^{2}-7y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Agħmel il-multiplikazzjonijiet fi y\left(y-7\right)-y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Ikkombina termini simili f'y^{2}-7y-y^{2}-7y.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}+\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' y+7 u y-7 huwa \left(y-7\right)\left(y+7\right). Immultiplika \frac{y}{y+7} b'\frac{y-7}{y-7}. Immultiplika \frac{y}{y-7} b'\frac{y+7}{y+7}.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)+y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Billi \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} u \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y^{2}-7y+y^{2}+7y}{\left(y-7\right)\left(y+7\right)}}
Agħmel il-multiplikazzjonijiet fi y\left(y-7\right)+y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}}
Ikkombina termini simili f'y^{2}-7y+y^{2}+7y.
\frac{-14y\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)\times 2y^{2}}
Iddividi \frac{-14y}{\left(y-7\right)\left(y+7\right)} b'\frac{2y^{2}}{\left(y-7\right)\left(y+7\right)} billi timmultiplika \frac{-14y}{\left(y-7\right)\left(y+7\right)} bir-reċiproku ta' \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}.
\frac{-7}{y}
Annulla 2y\left(y-7\right)\left(y+7\right) fin-numeratur u d-denominatur.
\frac{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}-\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' y+7 u y-7 huwa \left(y-7\right)\left(y+7\right). Immultiplika \frac{y}{y+7} b'\frac{y-7}{y-7}. Immultiplika \frac{y}{y-7} b'\frac{y+7}{y+7}.
\frac{\frac{y\left(y-7\right)-y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Billi \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} u \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{y^{2}-7y-y^{2}-7y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Agħmel il-multiplikazzjonijiet fi y\left(y-7\right)-y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y}{y+7}+\frac{y}{y-7}}
Ikkombina termini simili f'y^{2}-7y-y^{2}-7y.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)}+\frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' y+7 u y-7 huwa \left(y-7\right)\left(y+7\right). Immultiplika \frac{y}{y+7} b'\frac{y-7}{y-7}. Immultiplika \frac{y}{y-7} b'\frac{y+7}{y+7}.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y\left(y-7\right)+y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}}
Billi \frac{y\left(y-7\right)}{\left(y-7\right)\left(y+7\right)} u \frac{y\left(y+7\right)}{\left(y-7\right)\left(y+7\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{y^{2}-7y+y^{2}+7y}{\left(y-7\right)\left(y+7\right)}}
Agħmel il-multiplikazzjonijiet fi y\left(y-7\right)+y\left(y+7\right).
\frac{\frac{-14y}{\left(y-7\right)\left(y+7\right)}}{\frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}}
Ikkombina termini simili f'y^{2}-7y+y^{2}+7y.
\frac{-14y\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)\times 2y^{2}}
Iddividi \frac{-14y}{\left(y-7\right)\left(y+7\right)} b'\frac{2y^{2}}{\left(y-7\right)\left(y+7\right)} billi timmultiplika \frac{-14y}{\left(y-7\right)\left(y+7\right)} bir-reċiproku ta' \frac{2y^{2}}{\left(y-7\right)\left(y+7\right)}.
\frac{-7}{y}
Annulla 2y\left(y-7\right)\left(y+7\right) fin-numeratur u d-denominatur.